Causal Consistency For Large Neo4j Clusters
Jim Webber

Chief Scientist, Neo4j

7%

ml [@Neoy)

M QCon London

Ann Loves » Dan

Loves — Dan

Ann

(:Person {name:"Ann"}) —-[:LOVES]-> (:Person {name:"Dan"})

Node Relationship Node

Query: Whom does Ann love?

MATCH (:Person {name:"Ann"})-[:LOVES]->(whom)

RETURN whom

Motivation
Why do we need clusters of Neo4j?

Massive Throughput

Data Redundancy

Data Redundancy

Data Redundancy

Data Redundancy

High Availability

High Availability

High Availability

Error!
503: Service Unavailable

High Availability

Error!
503: Service Unavailable

High Availability

Error!
503: Service Unavailable

High Availability

Error!
503: Service Unavailable

High Availability

Error!
503: Service Unavailable

1

o0 $$

Massive Throughput Data Redundancy High Availability

1

o0 55

Massive Throughput Data Redundancy High Availability

Causal
Clustering

Bigger Clusters Consensus Commit

dee
o0

Massive Throughput Data Redundancy High Availability

Roles for safety and scale
Divide and conquer complexity

Core

Read Replicas

Core

« Small group of Neo4| databases
 Fault-tolerant Consensus Commit
* Responsible for data safety

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

CREATE (:User {...})

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

CREATE (:User {...})

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

CREATE (:User {...})

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

CREATE (:User {...})

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

CREATE (:User {...})

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

Success

Writing to the Core Cluster

Neo4j Cluster

Neo4j Driver

Success

Raft Protocol

Non-Blocking Consensus for Humans

In Search of an Understandable Consensus A
(Extended Version)

Stanford
Abstract

Raft is a consensus algorithm for
log. It produces a result equi

it is as efficient as Paxo 1 1S\
from Paxos; thy s Raft
Paxos an esab
ing ti m order td enhance understandabil-
Y, paraly theWeey elements of consensus, such as
e

¢ replication, and safety, and it enforces
r degree of coherency to reduce the number of
es that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

1 Intradnctinn

Diego Ongaro and John £

L

ction (relative to Paxos, Raft reduces the
of nondeterminism and the ways servers can be in-
onsistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

e Leader election: Raft uses randomized timers to

Raft Protocol

ST

S5 . ‘32 S2
S3

12345678910

ST

S5

https://github.com/ongardie/raftscope

Raft in a Nutshell

Raft keeps logs tied together (geddit?)

 Logs contain entries for both the database and the cluster membership
 Entries are appended and subsequently committed if a simple majority agree
 |mplication: majority agree with the log as proposed

 Anyone can call an election: highest term (logical clock) wins, followed by highest committed,
followed by highest appended.

 Appended, but not committed, entries can be truncated, but this is safe (translates as transaction
aborted)

https://github.com/ongardie/raftscope

Consensus Log - Committed Transactions = Updated Graph

Neo4j Raft implementation

9 10 11 12 13 14

4

4 9 10 11

11 12 13

Uncommitted
entries may differ
between

11 members

4

Consensus log: stores both committed and
uncommitted transactions

A

Transactions are only appended to the transaction

log when committed according to Raft

o o o o o
[[[N [N [N
.‘h

N
w

E

N
w

.-h

N
w

N
w

.‘p

~
w
v
o
~
==}
O
=
o

.-P

Transaction log: the same transactions appear
in the same order on all members

L | A
Transactions are applied, updating the graph

FEEEE

Core

« Small group of Neo4| databases
 Fault-tolerant Consensus Commit
* Responsible for data safety

Read Replicas

For massive query throughput
Read-only replicas

Not involved in Consensus Commit
Disposable, suitable for auto-scaling

Propagating updates to the Read Replicas

Neo4j Cluster

Neo4j Driver

9000
/

Propagating updates to the Read Replicas

Neo4j Cluster

Neo4j Driver

Propagating updates to the Read Replicas

Neo4j Cluster

Neo4j Driver

Write

Reading from the Read Replicas

Neo4j Cluster

Neo4j Driver

Read

Updating the graph

CQ F@ Updating the graph

Read Queries, analysis, reporting
Replicas

ESTATE=S$ (neo-workbench estate add database -p Local -b core-block -s 3)
neo-workbench estate add database -p Local -b edge-block -s 10 $ESTATE
neo-workbench database install -m Core \
--package-uri file:///Users/jim/Downloads/neo4dj-enterprise-3.1.1-unix.tar.gz \
-b core-block S$SESTATE
neo-workbench database install -m Read Replica \
--package-uri file:///Users/jim/Downloads/neo4j-enterprise-3.1.1-unix.tar.gz \

-b edge-block S$SESTATE

neo-workbench database start SESTATE

Neo4j Container Orchestration with Kubernetes,
Docker Swarm, Mesaos

cloud @ graph-databases Graphs data-mining bigdata neo4j

:sysinfo

Role

LEADER
FOLLOWER
FOLLOWER
FOLLOWER
FOLLOWER
READ_REPLICA
READ_REPLICA
READ_REPLICA
READ_REPLICA

READ_REPLICA

READ_REPLICA

Causal Cluster Members

Addresses

bolt://localhost:26000, http://localhost:7474, https://localhost:22000
bolt://localhost:26001, http://localhost:7475, https://localhost:22001
bolt://localhost:26002, http://localhost:7476, https://localhost:22002
bolt://localhost:26003, http://localhost:7477, https://localhost:22003
bolt://localhost:26004, http://localhost:7478, https://localhost:22004
bolt://localhost:26006, http://localhost:7480, https://localhost:22006
bolt://localhost:26007, http://localhost:7481, https://localhost:22007
bolt://localhost:26008, http://localhost: 7482, https://localhost:22008
bolt://localhost:26009, http://localhost: 7483, https://localhost:22009
bolt://localhost:26010, http://localhost: 7484, https://localhost:22010

bolt://localhost:26012, http://localhost:7486, https://localhost:22012

Actions
Open
Open
Open

Open

Open
Open
Open
Open
Open

Open

®

Building an App

Computer science meets technology

App Neo4j
Server Driver

Java Python

<dependency>
<groupId>org.neodj.driver</groupId> pip install neo4j-driver
<artifactId>neo4j-java-driver</artifactId>

</dependency>

NET JavaScript

PM> Install-Package Neo4j.Driver npm install neo4j-driver

/' Developer: Languac X\D

L&) [=]e]x]

& Cc 0O [E https://neo4j.com/developer/language-guides/ ﬁ] O @

@neoy]

Language

Blog Support Contact Us Download Neo4j

PRODUCTS SOLUTIONS PARTNERS CUSTOMERS LEARN DEVELOPERS Q Search

Guides

Data Modeling
Working with Data

Drivers & Language Guides

o Java
o Spring Framework
o .NET

© JavaScript

o Python

Developer — Develop with Neo4j
Get Started
Cypher Query Language

Language Guides

These guides and tutorials are designed to provide detailed examples of how to integrate Neo4j
with your preferred programming language. Neo4j officially supports the drivers for .Net, Java,
JavaScript and Python for the binary Bolt protocol. Our community contributors provide drivers
for all major programming languages for all protocols and APIs. In this section, we provide an
introduction and a consistent example application for several languages and Neo4j drivers.

https://neo4j.com/developer/language-quides

bolt://

GraphDatabase.driver("bolt://aServer")

bolt+routing://

GraphDatabase.driver("bolt+routing://aCoreServer")

bolt+routing://

GraphDatabase.driver("bolt+routing://aCoreServer")

Bootstrap: specify any
core server to route load
across the whole cluster

Application
Server

/
/

Neo4;
Driver

—3
=

<J

-

/|

A

"

@
@
Y

Routed write statements

= GraphDatabase.driver("bolt+routing://aCoreServer")
(Session session = .session(AccessMode.WRITE))
(Transaction tx = session.beginTransaction())

tx.run("MERGE (user:User {userId: {userId}})"
parameters("userId", userId))

tx.success()

Routed read queries

= GraphDatabase.driver("bolt+routing://aCoreServer")
(Session session = .session(AccessMode.READ))
(Transaction tx = session.beginTransaction())

tx.run("MATCH (user:User {userlId: {userId}})-[*]-(:Product) RETURN *"
parameters("userId", userId))

tx.success()

Consistencx models
at you write?

Can you read w

Cluster members slightly “ahead” or “behind” of each other

If | query this server,
I'll see all updates '
from all committed

transactions
\\\)e
“ ITTTETTTEET O
ry.‘ 0 1 2 5 6 7 8 9 10
updates EET [B0 [DT
mtransactlon 11
0 5 6 7 8 9 10

1 2 3

0 1 2 3 4 5 67

Updating the graph

You need
to login in
to continue
your
purchase!

[Login]
[Register]

O

You need
to login in
to continue
your
purchase!

[

Login]

o

O
N—

Username:

Password:

[Create Account]

o

O

A

_—

You need
to login in
to continue
your
purchase!

[

Login]

[

Register]

o

O

Username:
jim_w

Password:
%k ok ok ok ok sk sk 5k

Create Account

O

You need
to login in
to continue
your
purchase!

[

Register

J

N

O

A

S—

Username:

Password:

Username:

Jjim_ w

Password:

s sk ke sk sk sk sk sk

[Login

No account
Username: found!
Jjim_ w
Password:
% ok sk ok ok ok sk 5k

Login [Try again }

_ © J L\ © J
N~— N

A few moments later...

Username:

jim_ w

Password:

sk ok ok o sk seskok

[Login

A few moments later...

- : R 4 : A
Login
Username: Successful

Jjim_ w
Password:
% ok sk ok ok ok sk 5k

g | [Purchase |
O O

N— N

Why didn’t this work?

Eventual Consistency

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

LIS NG

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

CREATE (:User)

LIS NG

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

CREATE (:User)

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

CREATE (:User)

Username:

| jim_w

Password:

| *kkkkkkk

" esereon |

O

Create

App
Server A Driver

CREATE (:User)

Username: App

| Jim_w | Create Server A Driver
Password:
| *kkkkkkk |

S 2
|

0 —
Create Account N

You need O
to login in
to continue

your

purchase!

[
L

i
O

CREATE (:User)

Username:
| jimw |

Password:
| *kkkkkkk |

1

(o \

[R=—")

You need
to login in
to continue
your
purchase!

P

i}

Username:

EILEY | Create
Password:

e —

¢ |

g&

0 =

O

Username:
| jimw |

Password:
| *kkkkkkk |

1

App
Server A Driver

CREATE (:User)

11

11

(o \

0 =

You need
to login in
to continue
your
purchase!

Username:
| jim_w |

Password:

Create Account

Create

e —

g&

[L

O

Username:
| jimw |

Password:
| *kkkkkkk |

Login

App
Server A Driver

CREATE (:User)

o 1 2 3 4 5 6 7 8 9 10 11

Server B Driver

MATCH (:User)

(o \

[R=—")

You need
to login in
to continue
your
purchase!

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

g&
-

o R=—)

App
Server A Driver

Create

CREATE (:User)

No account
found!

Try again

o 1 2 3 4 5 6 7 8 9 10 11

Server B Driver
Login

MATCH (:User)

O

Bookmark

Session token

String (for portability)

Opaque to application

Represents ultimate user’s most recent view
of the graph

More capabilities to come

Let’s try again, with Causal Consistency

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

LIS NG

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

CREATE (:User)

LIS NG

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

CREATE (:User)

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

Create

i)

App
Server A Driver

CREATE (:User)

Username:

| jim_w

Password:

| *kkkkkkk

" esereon |

o J N

Create

App
Server A Driver

CREATE (:User)

Username: App

| Jim_w | Create Server A Driver
Password:
| dedk ke dekkok |

SR %
|

0 —
Create Account N

You need O I
to login in
to continue l

your

purchase!

[
l

i
O

CREATE (:User)

Username:
| jimw |

Password:
| *kkkkkkk |

1

(o \

[R=—")

You need
to login in
to continue
your
purchase!

P

i}

Username:

EILEY | Create
Password:

e —

¢ |

glL

0 =

O

Username:
| jimw |

Password:
| *kkkkkkk |

1

App
Server A Driver

CREATE (:User)

11

11

Username: App

| Jim_w | Create Server A Driver
Password:
| dedk ke dekkok |

SR %
|

0 —
Create Account N

You need O I
to login in
to continue l
your Ll

purchase! BT T B T .

[
o
= n

CREATE (:User)

o 1 2 3 4 5 6 7 8 9 10 11

App

Server B Driver I

MATCH (:User)

O

Username:
| jimw |

Password:
| *kkkkkkk |

(o \

[R=—")

You need
to login in
to continue
your
purchase!

Username:

| jim_w |

Password:

| *kkkkkkk |

Create Account

O

glL

Create

Username:

| jimw |

Password:

| *hkkkkkkk |

App
Server A Driver

CREATE (:User)

App

Server B Driver I

MATCH (:User)

Username: App

| Jim_w | Create Server A Driver
Password:
| dedk ke dekkok |

SR %
|

0 —
Create Account N

You need O I
to login in
to continue l

your

purchase!

[
o
= n

CREATE (:User)

App

Server B Driver I

MATCH (:User)

O

Username:
| jimw |

Password:
| *kkkkkkk |

{E#gey

[R=—")

You need
to login in
to continue
your
purchase!

=

(o \
[X=—)

Username:
| jim_w |

Create

Password:
| *kkkkkkk |

TR A

App
Server A Driver

CREATE (:User)

Create Account N

O

App
Server B Driver

MATCH (:User)

Login
Successful
N
N
Purchase
O

{E#gey

Obtain bookmark

(Session session = .session(AccessMode.))
(Transaction tx = session.beginTransaction())
tx.run("CREATE (user:User {userId: {userld}, passwordHash:
{passwordHash})"

parameters("userId", userld, "passwordHash", passwordHash))

tx.success()

String bookmark = session.lastBookmark()

Obtain bookmark

Username:
Jim_w

App
Server A Driver

Password:

CREATE (:User)

Create Account

You need
to login in
to continue
your
purchase!

{E#gey

Server B Driver I
\ @)) Login Login
Successful MATCH (:User) 0 1 2 3 4 5 6 7 8 9 10 11
A
N
Purchase
O

Use a bookmark

(Session session = .session(AccessMode.))
(Transaction tx = session.beginTransaction(bookmark))

tx.run("MATCH (user:User {userld: {userId}}) RETURN *"
parameters("userld", userId))

tx.success()

(o \

[R=—")

You need
to login in
to continue
your
purchase!

(o \
[X=—)

Username:
| jim_w |

Password:

Create Account

Create

e —

App
Server A Driver

CREATE (:User)

O

Login
Successful

App
Server B Driver

MATCH (:User)

{E#gey

Use bookmark

CQ F@ Updating the graph

Read Queries, analysis, reporting
Replicas

Thank you for listening
@jimwebber

