
Async or Bust!?
Todd L. Montgomery
@toddlmontgomery



About me…



✓ The Myth(s)
✓ Illusion & Cognitive Dissonance
✓ Impact of the Myth
✓ Subjectivity of the Myth



Do you remember….



https://www.youtube.com/watch?v=bzkRVzciAZg

https://www.youtube.com/watch?v=bzkRVzciAZg


The Myth

Sequential is good enough



The Myth

Sequential is good enough
….

Async is complicated & error prone



A Right Way

&

MANY Wrong Ways



MANY Right Ways

&

MANY Wrong Ways

In Reality…



Sequential
Synchronous

Blocking
Asynchronous
Non-Blocking

Wording



What is Sync?

Request

Response

Processing



What is Async?

Request

Response

Processing



What is Async?

Request

Response

Processing

Cross Thread/Core/Node



What is Async?

Request

Response

Processing?



What is Event-Driven?

Request

Response

?



Illusion of Sequentiality



Ordering is an Illusion



Compiler can re-order

Runtime can re-order

CPU can re-order



Ordering has to be imposed!



Illusion of Sequentiality



• CPUs - Load/Store Buffers

Illusion of Sequentiality



• CPUs - Load/Store Buffers
• Storage - Caches

Illusion of Sequentiality



• CPUs - Load/Store Buffers
• Storage - Caches
• OS - VM & Caches

Illusion of Sequentiality



• CPUs - Load/Store Buffers
• Storage - Caches
• OS - VM & Caches

• Library - Promises / Futures

Illusion of Sequentiality



@toddlmontgomery

Sync
Requests

&
Responses

Request

Request

Request
Response

Response

Response

As easy* as…

* - for some definition of



@toddlmontgomery

Async
Requests

&
Responses

Request

Request

Request
Response

Response

Response

But with efficiency of…



Do something
while waiting



@toddlmontgomery

Async
Requests

&
Responses

Correlation!

Request 0

Request 1

Request 2
Response 0

Response 1

Response 2



@toddlmontgomery

Correlation!

Request 0

Request 1

Request 2
Response 0

Response 1

Response 2

Ordering



@toddlmontgomery

Correlation!

Request 0

Request 1

Request 2

Response 0

Response 1

Response 2

(Valid)
Re-Ordering

(one of many)



The key is to wait…

That has a price!



• Opportunity to De-Schedule 

Price of Illusion



• Opportunity to De-Schedule 
• Locks + Signaling

Price of Illusion



• Opportunity to De-Schedule 
• Locks + Signaling

• Semaphores
• Condition Variables

Price of Illusion



Cognitive Dissonance 



• Completed Operation Fallacy

Cognitive Dissonance



• Completed Operation Fallacy
• Caching

Cognitive Dissonance



@toddlmontgomery

Flush
…

Request

Response

Block

Caches



@toddlmontgomery

Flush
…

Request

Response

Block

Caches

…?



@toddlmontgomery

Flush
…

Request

Response

Block

Caches

Stable… ?

…?



• Completed Operation Fallacy
• Caching
• Blocking ACK Spiral

Cognitive Dissonance



@toddlmontgomery

Block

Request

Response ACK

Response

Block

Blocking ACK



@toddlmontgomery

Block

Request

Response ACK

Response

Block

Blocking ACK

X



@toddlmontgomery

Block

Request

Response ACK

Response

Block

Blocking ACK

X

Receiver Blocks Forever



@toddlmontgomery

Block

Request

Response ACK

Response

Spiral!!!

Block

Blocking ACK

Response 
ACK-ACK



• Completed Operation Fallacy
• Caching
• Blocking ACK Spiral

• Wrong Abstraction
• Remote Procedure Call

Cognitive Dissonance



“The purpose of abstraction is 
not to be vague, but to create a 
new semantic level in which one 
can be absolutely precise” 

— Edsger W. Dijkstra 
(The Humble Programmer)

Abstraction



• Hiding precision
• Inherent asynchronous nature
• Error handling

Remote Procedure Call



Don’t assume the network
is reliable

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Remote Procedure Call

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing


“Yeah, yeah, but your scientists 
were so preoccupied with 
whether or not they could that 
they didn't stop to think if they 
should.”

 — Jurassic Park

Remote Procedure Call



Works sooo poorly, we
took it one step further…



REST via HTTP/1.1

• Custom Methods
• Custom Response Codes
• No Pipelining
• Everything Request/Response



REST via HTTP/2

• Custom Methods
• Custom Error Codes
• Custom Frame Types
• No Pipelining
• Mostly Request/Response



• Completed Operation Fallacy
• Caching
• Blocking ACK Spiral

• Wrong Abstraction
• Remote Procedure Call

• Coupling

Cognitive Dissonance



Sequential function calls 
can and do 

create Coupling



Impact



@toddlmontgomery

Sync
Requests

&
Responses

Request

Request

Request
Response

Response

Response



@toddlmontgomery

Sync
Requests

&
Responses

Request

Request

Request
Response

Response

Response

Throughput limited by 
Round-Trip Time (RTT)



Speed of Light isn’t only
a good idea, it’s the Law



Accumulated 
Improvement 

Time 

Network 
Bandwidth 

Response Time 

Storage 
Capacity 

CPU Cores 

Memory 
Capacity 



@toddlmontgomery

Data

Data

Data
ACK

ACK

ACK

Throughput = Data Length / RTT

R
TT

Stop-And-Wait
Flow Control





Delay

Bandwidth

BDP = (Byte / sec) * sec = Bytes

BDP
(Buffer)



@toddlmontgomery

Data

ACK
R

TT

Throughput = N * Data Length / RTT

… N Data
“Blobs”



So…
How big is N?



N = Number of Cores

Thread-Per-Request



How big is N?

TCP Flow & Congestion Control



How big is N?

It depends…

TCP Flow & Congestion Control



Big… but

Don’t overflow receiver

Don’t overflow “network”



TCP Flow Control

Receiver advertises N



TCP Congestion Control

Sender probes for network N



TCP BBR Congestion Control

Bottleneck Bandwidth vs.
Round-Trip Time

http://queue.acm.org/detail.cfm?id=3022184

http://queue.acm.org/detail.cfm?id=3022184


TCP Sender

min(Receiver N, Network N)

Only go as fast as Network & Receiver



Static N?

 Based on 
number of cores(threads)?

REALLY?!



But that isn’t the worst…



Locks & Signaling

• Introduces Serialization



"AmdahlsLaw" by Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png. Licensed under CC BY-SA 3.0 via Wikimedia Commons



Locks & Signaling

• Introduces Serialization
• Introduces Coherence Penalty



Universal Scalability Law 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

1 2 4 8 16 32 64 128 256 512 1024 

Sp
e

e
d

up
 

Processors 

Amdahl USL 



Locks & Signaling

• Introduces Serialization
• Introduces Coherence Penalty

Limits Scaling!



1 thread of awesome 
>

128 cores of so-so

http://www.frankmcsherry.org/graph/scalability/cost/2015/01/15/COST.html
http://blog.acolyer.org/2015/06/05/scalability-but-at-what-cost/

http://www.frankmcsherry.org/graph/scalability/cost/2015/01/15/COST.html
http://blog.acolyer.org/2015/06/05/scalability-but-at-what-cost/


Async is HARD!!!



• Callback Hell
• Back Pressure! 

Async is HARD!!



Composition is hard



ReactiveX

http://reactivex.io/

http://reactivex.io/


Observables



JavaScript

• RxJS
• ECMAScript Observables

https://github.com/ReactiveX/RxJS
https://github.com/zenparsing/es-observable

https://github.com/ReactiveX/RxJS
https://github.com/zenparsing/es-observable


Challenges?



• Non-Blocking Back Pressure
• Heterogeneous Connectivity 

Challenges



Dealing with Back Pressure

• ReactiveStreams
• RxJava 2.0

 http://www.reactive-streams.org/

https://github.com/zenparsing/es-observable


Rx Heterogenous Connectivity

• ReactiveSocket

http://reactivesocket.io/

http://reactivesocket.io/


• Callback Hell
• Back Pressure! 
• Breaking up work units?

Async is HARD!!



Threaded Work Units

• Work between System Calls



Threaded Work Units

• Work between System Calls
• Time between System Calls

High Variance



Async Duty Cycle

• Work within a single cycle

First Class Concern



• Callback Hell
• Back Pressure! 
• Duty Cycle
• Error Handling

Async is HARD!!



Error Handling

• Errors are events

No real difference!!



Error Handling

Be Honest…



Takeaways!



Still Think…

Sequential is good enough?
….

Async is complicated & error prone?



@toddlmontgomery

Questions?

• Twitter @toddlmontgomery

Thank You!


