
CURB TAIL LATENCY
IN-MEMORY CACHING:

WITH PELIKAN



ABOUT ME

• 6 years at Twitter, on cache 

• maintainer of Twemcache & Twitter’s Redis fork 

• operations of thousands of machines 

• hundreds of (internal) customers 

• Now working on Pelikan, a next-gen cache framework to replace the above @twitter 

• Twitter: @thinkingfish

https://github.com/twitter/twemcache
http://pelikan.io


CACHE PERFORMANCE
THE PROBLEM:



CACHE 
RULES 
EVERYTHING 
AROUND 
ME

CACHE DB

SERVICE



CACHE 
RUINS 
EVERYTHING 
AROUND 
ME

CACHE DB

SERVICE

😣

😣



LATENCY & FANOUT

• what determines overall 99%-ile of 
req?

CACHE

SERVICE

CACHE CACHE

req: all tweets for #qcon 
⇒ 

tid 1, tid 2, …, tid n 
(assume n is large)

fanout percentile

1 p99

10 p999

100 p9999

1000 p99999



LATENCY & DEPENDENCY

• what determines overall 99%-ile? 

• adding all latencies together 

• N steps ⇒ Nx exposure to tail latency

SERVICE A

get timeline 
get tweets 
get users for each tweet

SERVICE B

SERVICE C



CACHE IS UBIQUITOUS

• Exposure of cache tail 
latency increases with both 
scale and dependency!

CACHE A

SERVICE A

CACHE A CACHE A

CACHE B

SERVICE B

CACHE B CACHE B

CACHE C

SERVICE C

CACHE C CACHE C



GOOD CACHE PERFORMANCE 
= 

PREDICTABLE LATENCY



GOOD CACHE PERFORMANCE 
= 

PREDICTABLE TAIL LATENCY



“MILLIONS OF QPS PER MACHINE” 
“SUB-MILLISECOND LATENCIES” 
“NEAR LINE-RATE THROUGHPUT” 

…

KING OF PERFORMANCE



“USUALLY PRETTY FAST” 
“HICCUPS EVERY ONCE IN A WHILE” 

“TIMEOUT SPIKES AT THE TOP OF THE HOUR” 
“SLOW ONLY WHEN MEMORY IS LOW” 

…

GHOSTS OF PERFORMANCE



I SPENT FIRST 3 MONTHS AT TWITTER 
LEARNING CACHE BASICS…

…AND THE NEXT 5 YEARS CHASING 
GHOSTS





MINIMIZE 
INDETERMINISTIC 

BEHAVIOR

CHAINING DOWN GHOSTS 
=



HOW?

IDENTIFY

AVOID MITIGATE



CACHING IN DATACENTER
A PRIMER:



DATACENTER

• geographically centralized 

• highly homogeneous network 

• relatively reliable infrastructure



MAINLY: 

REQUEST → RESPONSE

CACHING

INITIALLY: 

CONNECT

ALSO (BECAUSE WE ARE GROWN-UPS): 

STATS, LOGGING, HEALTH CHECK…



CACHE SERVER: BIRD’S VIEW

HOST

event-driven 
server

protocol data 
storage

OS

network infrastructure



HOW DID WE UNCOVER THE 
UNCERTAINTIES?



”

“
BANDWIDTH UTILIZATION WENT WAY 

UP, EVEN THOUGH REQUEST RATE 
WAS WAY LOWER.



SYSCALLS



CONNECTING IS SYSCALL-HEAVY

read 
event accept config register4+ syscalls



REQUEST IS SYSCALL-LIGHT

read 
event

IO
(read)

post-
read

parse process compose

write 
event

IO
(write)

post-
write

3 syscalls*

*: event loop returns multiple read events at once, I/O syscalls can be further amortized by batching/pipelining



TWEMCACHE IS MOSTLY SYSCALLS

• 1-2 µs overhead per call 

• dominate CPU time in simple cache 

• What if we have 100k conns / sec?

source

https://github.com/twitter/twemcache/wiki/Impact-of-Lock-Contention


CONNECTION STORM

culprit:



”

“
…TWEMCACHE RANDOM HICCUPS, 
ALWAYS AT THE TOP OF THE HOUR. 



DISK

⏱

cache

tworker

logging

cron job “x”

I/O



BLOCKING I/O

culprit:



”

“
WE ARE SEEING SEVERAL “BLIPS” 

AFTER EACH CACHE REBOOT… 



MEMCACHE RESTART 
… 

MANY REQUESTS TIMED OUT 
CONNECTION STORM 

SOME MORE REQUESTS TIMED OUT 

(REPEAT A FEW TIMES) 

A TIMELINE

lock
!

lock
!



LOCKING

culprit:



LOCKING FACTS

• ~25ns per operation 

• more expensive on NUMA 

• much more costly when contended

source

https://github.com/twitter/twemcache/wiki/Impact-of-Lock-Contention


”

“
HOSTS WITH LONG RUNNING 

TWEMCACHE/REDIS TRIGGER OOM 
DURING LOAD SPIKES.



”

“
REDIS INSTANCES THAT STARTED 

EVICTING SUDDENLY GOT SLOWER. 



MEMORY 
LAYOUT / OPS

culprit:



CONNECTION STORM 
BLOCKING I/O 

LOCKING 
MEMORY

SUMMARY



HOW TO MITIGATE?



PUT OPERATIONS OF DIFFERENT NATURE / PURPOSE 
ON SEPARATE THREADS

HIDE EXPENSIVE OPS



DATA PLANE, 
CONTROL PLANE



STATS AGGREGATION 
STATS EXPORTING 

LOG DUMP 
LOG ROTATION 

…

SLOW: CONTROL PLANE



FAST: DATA PLANE / REQUEST

read 
event

IO
(read)

post-
read

parse process compose

write 
event

IO
(write)

post-
write

:
tworker



FAST: DATA PLANE / CONNECT

read 
event accept config

read 
event register:

tworker

:
tserver dispatch



LATENCY-ORIENTED THREADING

tworker

tserver tadmin

new 
connection

logging, 
stats update

logging, 
stats update

REQUESTS

CONNECTS OTHER



WHAT TO AVOID?



LOCKING



WHAT WE KNOW

• inter-thread communication in cache 

• stats 

• logging 

• connection hand-off 

• locking propagates blocking/delay 
between threads

tworker

tserver tadmin

new 
connection

logging, 
stats update

logging, 
stats update



MAKE STATS UPDATE LOCKLESS 

LOCKLESS OPERATIONS

w/ atomic instructions



MAKE LOGGING LOCKLESS

LOCKLESS OPERATIONS

RING/CYCLIC BUFFER

read 
position

writer reader
write 

position



MAKE CONNECTION HAND-OFF LOCKLESS

LOCKLESS OPERATIONS

RING ARRAY

read 
position

writer reader
write 

position

… …



MEMORY



WHAT WE KNOW

• alloc-free cause fragmentation 

• internal vs external fragmentation 

• OOM/swapping is deadly 

• memory alloc/copy relatively 
expensive

source

http://locklessinc.com/benchmarks_allocator.shtml


AVOID EXTERNAL FRAGMENTATION 
CAP ALL MEMORY RESOURCES

PREDICTABLE FOOTPRINT



REUSE BUFFER 
PREALLOCATE

PREDICTABLE RUNTIME



PELIKAN CACHE
IMPLEMENTATION



WHAT IS PELIKAN CACHE?

• (Datacenter-) Caching framework 

• A summary of Twitter’s cache ops 

• Perf goal: deterministically fast 

• Clean, modular design 

• Open-source

waitless logging lockless metrics composed config

channels buffers timer alarm

poo
ling

streams events

data store

parse/compose/tracedata model

request response

server 
orchestration

threading

common 
core

cache

process

pelikan.io

http://pelikan.io


A COMPARISON
PERFORMANCE DESIGN DECISIONS

latency-oriented 
threading

Memory/ 
fragmentation

Memory/ 
buffer caching

Memory/ 
pre-allocation, cap locking

Memcached partial internal partial partial yes

Redis no->partial external no partial no->yes

Pelikan yes internal yes yes no



MEMCACHED REDIS

TO BE FAIR…

• multiple threads can boost throughput 

• binary protocol + SASL 

• rich set of data structures 

• RDB 

• master-slave replication 

• redis-cluster 

• modules 

• tools



ALWAYS FAST
SCALABLE CACHE IS…



”

“
CAREFUL ABOUT MOVING TO 
MULTIPLE WORKER THREADS 



QUESTIONS?


