IN-MEMORY CACHING:

CURB TAIL LATENCY

ABOUT ME

» 6 years at Twitter, on cache
* maintainer of Twemcache & Twitter’s Redis fork y
» operations of thousands of machines

* hundreds of (internal) customers

* Now working on Pelikan, a next-gen cache framework to replace the above @twitter

« Twitter: @thinkingfish

https://github.com/twitter/twemcache
http://pelikan.io

THE PROBLEM:

CACHE PERFORMANCE

CACHE v

RULES

EVERYTHING

QEOUND I ’S’

CACHE

RUINS
EVERYTHING

AROUND I
ME

__

LATENCY & FANOUT

req: all tweets for #gcon

 what determines overall 99%-ile of =
req? SE RVl C E tid-1, tid 2.}, tidn
(assume n is large)

fanout percentile
1 P99
10 P999

100 09999
CACHE | |CACHE]| +---- |CACHE
1000 099999

LATENCY & DEPENDENCY

* what determines overall 99%-ile?
SERVICE A
» adding all latencies together l get timeline
get tweets
* N steps = Nx exposure to tail latency SERVICE B get users for each tweet

SERVICE C

CACHE IS UBIQUITOUS

\

» Exposure of cache tail CACHE A

CACHE A} o o o o ICACHE A

\4

latency increases with both
scale and dependency!

T

CACHEB| | CACHEB| o e |CACHEB

A4

SERVICE C

R

CACHE C| |CACHEC| o e e e |CACHEC

'¢ '¢ '¢

GOOD CACHE PERFORMANCE

PREDICTABLE LATENCY

GOOD CACHE PERFORMANCE

PREDICTABLE TAIL LATENCY

KING OF PERFORMANCE

“MILLIONS OF QPS PER MACHINE"”
“SUB-MILLISECOND LATENCIES”
“NEAR LINE-RATE THROUGHPUT”

GHOSTS OF PERFORMANCE

“USUALLY PRETTY FAST”
“HICCUPS EVERY ONCE IN A WHILE”
“TIMEOUT SPIKES AT THE TOP OF THE HOUR"”
“SLOW ONLY WHEN MEMORY IS LOW”

| SPENT FIRST 3 MONTHS AT TWITTER
LEARNING CACHE BASICS...

...AND THE NEXT 5 YEARS CHASING
GHOSTS

CHAINING DOWN GHOSTS

MINIMIZE
INDETERMINISTIC
BEHAVIOR

HOW?®

A PRIMER:

CACHING IN DATACENTER

DATACENTER

T
= - &
)

e

D

AN U T ;'..-/ (] [
i\\\\\\\\\ = = B SIS T ISl =S ;—7- ;-7 ;‘i) et At L. 7 Z Z
Na \\\ 5) 2 g : 3 :— f- ~- ;- [l =3 ;. e -:_ 2 # 2 7 7

b i

57 VT /3
—r pi ’/,[V’I;\ P

I8Bg A

[
s i et Sl
7

» geographically centralized

BRERRAE

* highly homogeneous network

. 1

I

\\

\
7

7,

o

A

3

N
'ﬂ'\

N LAAREEE =Y

» relatively reliable infrastructure

W

Q

e TV B
L N\

\\

§§j

%

'v--:\\

= BN AN

., 4

LAl
il
AU
Wil
L}
‘ { T

A1 [
A

; Himmt/L):

AT L -
WL V.

CACHING

MAINLY:
REQUEST — RESPONSE

INITIALLY:

CONNECT

ALSO (BECAUSE WE ARE GROWN-UPS):

STATS, LOGGING, HEALTH CHECK...

CACHE SERVER: BIRD’S VIEW

data
protocol
storage
event-driven
server

0 0

0 OS5 0
..................................... adlsanll oo

I— ------------------

HOW DID WE UNCOVER THE
UNCERTAINTIES?

66

BANDWIDTH UTILIZATION WENT WAY
UP, EVEN THOUGH REQUEST RATE
WAS WAY LOWER.

23

SYSCALLS

CONNECTING IS SYSCALL-HEAVY

read

accept confi reqister
event P J g

4+ syscalls

REQUEST IS SYSCALL-LIGHT

read [o, post-
event (read) read
3 syscalls* parse process compose
write [o, post-
event (write) write

*: event loop returns multiple read events at once, 1/O syscalls can be further amortized by batching/pipelining

TWEMCACHE IS MOSTLY SYSCALLS

count pct function
1572 52.4% _ sendmsg_nocancel
668 22.3% __read_nocancel
* 1-2 ps overhead per call 82 2.7% __lll_unlock_wake
78 2.6% __epoll_wait_nocancel
66 2.2% __pthread_mutex_lock
» dominate CPU time in simple cache - 19% assoc find
48 1.6% _|O_vfprintf
 What if we have 100k conns / sec? ° 15% | lockwa
36 1.2% conn_add_iov

27 0.9% memchr

— e source

https://github.com/twitter/twemcache/wiki/Impact-of-Lock-Contention

culprit:

CONNECTION STORM

66

..TWEMCACHE RANDOM HICCUPS,
ALWAYS AT THE TOP OF THE HOUR.

cache

B
tworker :
/Og ;
9rn
TP 5t >
e W
\/O
\/\‘

cron job “x”

culprit:

BLOCKING 1/0

66

WE ARE SEEING SEVERAL “BLIPS”
AFTER EACH CACHE REBOOT...

A TIMELINE
MEMCACHE RESTART

MANY REQUESTS TIMED OUT
CONNECTION STORM oK~
SOME MORE REQUESTS TIMED OUT

(REPEAT A FEW TIMES)

LOCKING FACTS

* ~25ns per operation
* more expensive on NUMA

* much more costly when contended

version
top of trunk

lock-free
hashtable

speedup

avg

0.343

0.262

30.92%

min

0.065

0.064

max

15.473

12.736

stddev

0.146

0.094

P95

0.570

0.382

49.21%

P99

0.787

0.603

30.51%

—

p999

1.200

0.860

39.53%

source

https://github.com/twitter/twemcache/wiki/Impact-of-Lock-Contention

66

HOSTS WITH LONG RUNNING
TWEMCACHE/REDIS TRIGGER OOM
DURING LOAD SPIKES.

23

66

REDIS INSTANCES THAT STARTED
EVICTING SUDDENLY GOT SLOWER.

culprit:

MEMORY

LAYOUT / OPS

SUMMARY

CONNECTION STORM
BLOCKING 1/0

LOCKING
MEMORY

HOW TO MITIGATE?

HIDE EXPENSIVE OPS

PUT OPERATIONS OF DIFFERENT NATURE / PURPOSE
ON SEPARATE THREADS

DATA PLANE,
CONTROL PLANE

SLOW: CONTROL PLANE

STATS AGGREGATION
STATS EXPORTING
LOG DUMP
LOG ROTATION

FAST: DATA PLANE / REQUEST

read [o, post-
event (read) read
Tworker
parse process compose
write o, post-

event (write) write

FAST: DATA PLANE / CONNECT

tserver read s
accept [
S : ook P config dispatch

t read _
et register
: event

LATENCY-ORIENTED THREADING

WHAT TO AVOID?

WHAT WE KNOW

 inter-thread communication in cache

Tworker
* stats
» logging new
connection

* connection hand-off

Tserver

* locking propagates blocking/delay =
logging,

between threads

stats update

logging,
stats update

Tadmin

LOCKLESS OPERATIONS

MAKE STATS UPDATE LOCKLESS

cu/ dlornC 1hSTrUCTionS

TR TTRIGY

LOCKLESS OPERATIONS

MAKE LOGGING LOCKLESS

“» RING/CYCLIC BUFFER

writer -—_—
"""""""""" L : reader
| ' @==mmmmmmmmemmam—a-
read write

position position

LOCKLESS OPERATIONS

MAKE CONNECTION HAND-OFF LOCKLESS

.-+ RING ARRAY ---

writer

reader

read write

position position

WHAT WE KNOW

» alloc-free cause fragmentation Allocator time taken in t-test1
Allocation sizes 2°to Zgobres

* internal vs external fragmentation

— lockless
—— glibc
—— hoard
—— tcmalloc

» OOM/swapping is deadly

time (s)

* memory alloc/copy relatively
expensive

I I\

I I @ &.—
1 2 3 4 5 8 12 1

threads

0 2 4 6 81012141618 20 2224 26 28 30

source

http://locklessinc.com/benchmarks_allocator.shtml

PREDICTABLE FOOTPRINT

AVOID EXTERNAL FRAGMENTATION
CAP ALL MEMORY RESOURCES

PREDICTABLE RUNTIME

REUSE BUFFER
PREALLOCATE

IMPLEMENTATION

PELIKAN CACHE

WHAT IS PELIKAN CACHE?

e T
data model parse/compose/trace cache

e Perf goal: deterministically fast= == e e eecccccccecccncc e e e e e s s e e r e e e e

* Clean, modular design streams events
POO

* Open-source ling .
channels buffers timer alarm S
core
Pelikan Te waitless logging lockless metrics composed config

» (Datacenter-) Caching framework server

orchestration

* A summary of Twitter’s cache ops

- threading

http://pelikan.io

PERFORMANCE DESIGN DECISIONS

A COMPARISON

Memcached

Pelikan

TO BE FAIR...

MEMCACHED

» multiple threads can boost throughput

* binary protocol + SASL

REDIS

* rich set of data structures
 RDB

* master-slave replication
 redis-cluster

e modules

 tools

SCALABLE CACHE IS...

ALWAYS FAST

66

CAREFUL ABOUT MOVING TO
MULTIPLE WORKER THREADS

GUESTIONS?

