DSSTNE: Deep Learning At Scale For Large
Sparse Datasets

Scott Le Grand
Senior Scientist
Teza Technologies

https://github.com/amznlabs/amazon-dsstne
mailto:varelse2005@gmail.com

Outline

*What's Deep Learning?

*Why GPUSs?

*Deep Learning for Recommendations at Amazon
DSSTNE

Benchmarks

DSSTNE at scale

*Deep Learning for The 99%

What's Deep Learning (Neural Networks)?

World’s most lucrative application of the chain
rule from calculus (as applied to a graph)

X 1s the input data
Al and A2 are linear transformations
fl and f2 are some sort of nonlinear function

[_ ® O ® O
X Al fl A2 f2==y

y=f2(42 (F1(a1(0)))

Nonlinear (Activation) Functions

Linear: =X

Sigmoid: =
1+e
Tanh: =ex+e_x
er—e
Relu: =max(x, 0)
SoftPlus: =log(1+e”)
: 1
SoftSign: =T
SoftMax: <

Neural Network Training

Training: Minimize an Error Function E(y, t)

@ ® O ® O
X AL fl A2 f2==y
L1: E(y, t) = |y — t|
[.2: E(y, t) = (y — t)*
Cross Entropy: E(y, t) = -t*log(y) -(1-t)*log(1-y)

Neural Network Derivatives (BackPropagation)

@E _ @E @f2 @A2 @f1 @A1
@x @f2 @A2 @f1 @Al @x
@E _ @E @f2 @A2

@A2;j @f2 @A2 @A2;;

@E _ @E @f2@A2@f1 @Al
@Aljj @f2@A2@f1 @Al @AL;

Deep Learning/Neural Networks in One Slide*

—_— *
><L+1 — XL WL—» L+1
T
—_— *
6L = 6L+1 WLH L+1
—_— *
AWL -L+1 = >(TL 8L+1

*The definitive answer to whether you should take Calculus, Statistics and Linear Algebra in college

Why GPUs?

“A Graphics Processing Unit (GPU) is a specialized
electronic circuit designed to rapidly manipulate and
alter memory to accelerate the creation of images
In a frame buffer intended for output to a display.”

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Memory_%28computing%29
https://en.wikipedia.org/wiki/Frame_buffer

Horizon Zero Dawn

Pretty Pictures Require Lots of Math and Data

Intel Core i7-6950x CPU: $1,723, 10 cores, 1.12 TFLOPS, 60 GB/s
*NVIDIA GTX Titan XP GPU: $1,200, 56 cores, 10.8 TFLOPS, 480 GB/s
NVIDIA GTX 1080Ti GPU: $699, 56 cores, 11.2 TFLOPS, 484 GB/s
*AMD R9 Fury X GPU: $500, 64 cores, 8.6 TFLOPS, 512 GB/s

*About 8-10x the performance for less than half the price

What can 11 TFLOPS do for you?

JAC NVE Performance

2010 2012 2014

JAC NVE Benchmark (2011)

8 x M2090 (New Code)
4 x M2090 (New Code)
2 x M2090 (New Code)
1 x M2090 (New Code)
1 x M2090

1 x GTX580 (New Code)
1 x GTX580

1 x C2050 (New Code)
1 x C2050

1 x C1060 (New Code)
1 x C1060

48 x Cray-XT5 nodes (192 active cores)

8 x Intel E5462 (2.8GHz)

43.57

Performance-on-single-$500-
50.17 €<——— GTX580 :GPU after-code:
optimization-under-our-SSE-
funding.9|

Maximum-achievable-

46.10 «—— performance-on'Cray-XT5:
(Kraken)Y

40 50 60 80 90
Throughput (NS/day)

Product Recommendations Also Require Lots of
Arithmetic (2014)

What are people who bought items A, B, C...Z most
likely to purchase next?

Traditionally addressed with variants of Matrix

Factorization, Logistic Regression, Naive Bayes,
Thompson Sampling, etc...

So why not Deep Learning?

Output (10K-10M)
' A
Hidden (100-1K)

Input (10K-10M)

Large Output Layers, Small Hidden Layers

Output (10K-10M)

Hidden (100-1K)

Input (10K-10M)

Existing frameworks were not designed to handle neural networks
with input (purchase history) and output (recommendations) layers
10K to 10M units wide because...

This Is A Huge Sparse Data Problem

Uncompressed sparse data either eats a lot of memory or it eats
a lot of bandwidth uploading it to the GPU

*Naively running networks with uncompressed sparse data leads
to lots of multiplications of zero and/or by zero. This wastes
memory, power, and time

*Product Recommendation Networks can have billions of
parameters that cannot fit in a single GPU so summarizing...

Framework Requirements (2014)

Efficient support for large input and output layers

Efficient handling of sparse data (i.e. don't store zero)
«Automagic multi-GPU support for large networks and scaling
*Avoids multiplying zero and/or by zero

«<24 hours training and recommendations cycle
Human-readable descriptions of networks (API)

DSSTNE: Deep Sparse Scalable Tensor
Network Engine*

*A Neural Network framework released into OSS by Amazon in May of 2016
*Optimized for large sparse data problems
Extremely efficient automagic model-parallel multi-GPU support

«~6X faster than TensorFlow on such datasets (and that's just on one GTX
Titan X (Maxwell), ~15x faster using 4 of them)

*100% Deterministic Execution #reproducibilitymatters #noASGD
Full SM 3.x, 5.x, and 6.x support (Kepler or better GPUSs)
Distributed training support OOTB (~20 lines of MPI Collectives)

*"Destiny”

Key Features

«Stores networks and data sets in NetCDF format with optional HDF5
support

*Multi-GPU handled with MPI and Interprocess CUDA P2P copies

e[nitial emphasis on fully-connected networks, convolutional and pooling
layer support was added late in 2016

Dependencies are C++11, CUDA 7.x+, netcdf, a C++11-aware MPI
library, libjsoncpp, and CuUDNN*

*There are no computational shortcuts here, all we're doing is avoiding
multiplying by zero and storing/copying zeroes

*Why isn't cuDNN just part of the CUDA Toolkit? Anyone? Bueller? Bueller?

Neural Networks As JSON Objects

{

"Version" : 0.7,
"Name" : "AE",
"Kind" : "FeedForward",
"SparsenessPenalty"” : {
"p": 0.5,
"beta" : 2.0
h

"ShuffleIndices" : false,

"Denoising” : {
"p":0.2
}1

"ScaledMarginalCrossEntropy" : {
"oneTarget" : 1.0,
"zeroTarget" : 0.0,
"oneScale" : 1.0,
"zeroScale" : 1.0

}

Layers": [
{"Name" : "Input”, "Kind" : "Input”, "N" : "auto", "DataSet" : "input", "Sparse" : true },
{"Name" : "Hidden", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 128, "Activation" : "Sigmoid", "Sparse" : true },
{"Name" : "Output”, "Kind" : "Output", "Type" : "FullyConnected", "DataSet" : "output", "N" : "auto", "Activation" : "Sigmoid", "Sparse" : true }

1,

"ErrorFunction" : "ScaledMarginalCrossEntropy"

}

AlexNet As A JSON Object*

{

"Version" : 0.81,

"Name" : "AlexNet",

"Kind" : "FeedForward",
"LocalResponseNormalization" :

{
"k" 2,
"n": 5,
"alpha" : 0.0001,
"beta" : 0.75
}

Layers" : [

"Kind" : "Input”, "Type" : "Convolutional”, "N" : "auto", "DataSet" : "input"},

"Kind" : "Hidden", "Type" : "Convolutional”, "N" : 96, "Kernel" : [11, 11], "KernelStride" : [4, 4], "Activation" : "Relu" },
"Kind" : "Hidden", "Type" : "Pooling", "Function" : "LRN" },

"Kind" : "Hidden", "Type" : "Pooling”, "Function" : "Max", "Kernel" : [3, 3], "KernelStride" : [2, 2]},

"Kind" : "Hidden", "Type" : "Convolutional”, "N" : 256, "Kernel" : [5, 5], "Activation" : "Relu" },

"Kind" : "Hidden", "Type" : "Pooling", "Function" : "LRN" },

"Kind" : "Hidden", "Type" : "Pooling", "Function" : "Max", "Kernel" : [3, 3], "KernelStride" : [2, 2] },

"Kind" : "Hidden", "Type" : "Convolutional”, "N" : 384, "Kernel" : [3, 3], "Activation" : "Relu" },

"Kind" : "Hidden", "Type" : "Convolutional”, "N" : 384, "Kernel" : [3, 3], "Activation" : "Relu" },

"Kind" : "Hidden", "Type" : "Convolutional”, "N" : 256, "Kernel" : [3, 3], "Activation” : "Relu" },

"Kind" : "Hidden", "Type" : "Pooling”, "Function" : "Max", "Kernel" : [3, 3], "KernelStride" : [2, 2] },

"Kind" : "Hidden", "Type" : "FullyConnected", "N" : 4096, "Activation” : "Relu”, "pDropout” : 0.5 },

"Kind" : "Hidden", "Type" : "FullyConnected", "N" : 4096, "Activation" : "Relu", "pDropout" : 0.5 },

"Kind" : "Output"”, "Type" : "FullyConnected", "N" : "auto", "DataSet" : "output”, "Activation" : "SoftMax" }

Lot Yt W W W W W e W e W W e Y e W WY

]

}

ErrorFunction” : "CrossEntropy"

*Accidentally similar to Andrej Karpathy's ConvnetJS framework

AlexNet

dense dense

dense
1000

4096

VGG16 As A JSON object

{
"Version" : 0.81,
"Name" : "VGG-16",
"Kind" : "FeedForward",
“"LocalResponseNormalization” :
{
k"2,
"n":5,
"alpha" : 0.0001,
"beta" : 0.75
h

"Layers" :

"input"},

64, "Kernel" : [3, 3], "KernelStride" : [1, 1], “"Activation” : "

4, "Kernel" : [3, 3], "KernelStride" : [1, 1], “"Activation” : "|

: "Pooling”, "Function" : "Max", "Kernel" : [2, 2], "KernelStride" : [2, 2] },

{"Kind" : "Hidden", "Type" : "Convolutional", “N" : 128, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation" : "Relu" },

{"Kind" : "Hidden", "Type" : "Convolutional", "N" : 128, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation" : "Relu" },

{"Kind" : "Pooling", "Function" : "Max", "Kernel" : [2, 2], "KernelStride" : [2, 2] },

{"Kind" : "Hidden", "Type" : "Convolutional", "N" : 256, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu" },
", "Type" : "Convolutional" 256, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activatio

"Type" : "Convolutional”, * 256, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu” },

" : "Pooling", "Function” : "Max", "Kernel" : [2, 2], "KernelStride" : [2, 2] },

"Hidden", "Type" : "Convolutional", "N" : 512, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation" : "Relu" },

idden", "Type" : "Convolutional”, * 12, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu" },

Hidden", "Type" : "Convolutional", "N 12, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu" },

"Pooling”, "Function" : "Max", "Kernel" : [2, 2], "KernelStride" : [2, 2] },

" : "Hidden", "Type" : "Convolutional®, "N" : 512, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu" },

" : "Hidden", "Type" : "Convolutional®, "N" : 512, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu" },

: "Hidden", "Type" : "Convolutional”, "N" : 512, "Kernel" : [3, 3], "KernelStride" : [1, 1], "Activation” : "Relu" },

" : "Pooling", "Function” : "Max", "Kernel" : [2, 2], "KernelStride" : [2, 2] },

"Hidden", "Type" : "FullyConnected", "N" : 4096, "Activation" : "Relu", "pDropout" : 0.5},
A i " : "FullyConnected' 4096, "Activation” : " ", "pDropout” : 0.5 },
" : "Output”, "Type" : “FullyConnected", “N" : "auto", "DataSet" : "output", "Activation" : "SoftMax" }

" : "Convolutional'

1

"ErrorFunction” : "CrossEntropy"

Human-Readable Doesn't Suck..

TLDR: 278 Lines of Code for AlexNet in Caffe...

JSON API Is Just An Interface to DSSTNE

struct NNNetworkDescriptor

{
string _name; /I Optional name for neural network
NNNetwork::Kind _kind; /I Either AutoEncoder or FeedForward (default)
ErrorFunction _errorFunction; /I Error function for training
vector<NNLayerDescriptor> _vlLayerDescriptor; /I Vector containing neural network layers
vector<NNWeightDescriptor> _vWeightDescriptor; /I Vector containing preloaded weight data
bool _bShuffleindices; /I Flag to signal whether to shuffle training data or not
uint32_t _maxout_k; /I Size of Maxout (default 2)
NNFloat _LRN_k; /I Local Response Normalization offset (default 2)
uint32_t _LRN_n; /I Local Response Normalization spread (default 5)
NNFloat _LRN_alpha; /I Local Response Normalization scaling (default 0.0001)
NNFloat _LRN_beta; /I Local Response Normalization exponent (default 0.75)
bool _bSparsenessPenalty; /I Specifies whether to use sparseness penalty on hidden layers or not
NNFloat _sparsenessPenalty_p; // Target sparseness probability for hidden layers
NNFloat _sparsenessPenalty_beta; // Sparseness penalty weight
bool _bDenoising; /I Specifies whether to use denoising on input layers
NNFloat _denoising_p; /I Probability of denoising inputs (for sparse layers, only denoise on non-zero values)
NNFloat _deltaBoost_one; /I Adjusts scaling of nonzero-valued outputs
NNFloat _deltaBoost_zero; /I Adjusts scaling of zero-valued outputs
NNFloat _SMCE_oneTarget; /I Relaxed target for non-zero target values (Default 0.9)
NNFloat _SMCE_zeroTarget; /I Relaxed target for zero target values (Default 0.1)
NNFloat _SMCE_oneScale; /I Scaling factor for non-zero target values (Default 1.0)
NNFloat _SMCE_zeroScale; /I Scaling factor for zero target values (Default 1.0)
string _checkpoint_name; /I Checkpoint file name
int32_t _checkpoint_interval; /I Number of epochs between checkpoints
int32_t _checkpoint_epochs; /I Number of epochs since last checkpoint
NNNetworkDescriptor();

h

DSSTNE's Engine is API-Agnostic

Amazon's Definition of Sparsity

*0.01% to 0.1% Density, far lower than the optimal sparsity for the
cuSparse library (too cuSlow)

eSparse data stored in CSR format (Index, value) or just indices

*Sparse SGEMM is 5-20x faster than a full SGEMM depending on
density (ultimately memory-limited)

eSparse input layers are nearly “free”

Sparse Neural Network Training*

><L+1 = ><L . W

L-L+1

AW = XT * §

L+1

*Sparse output layers are easy (exercise for the listener)

| .-

I

Sparse AW = X' * o

L+1

*Need to transpose X, matrix in parallel

*This Is easy to do with atomic ops

*But the transpose ordering is not deterministic, floating point math
IS not associative (A+B + C) 1= (C + A+ B)

«Solution: use 64-bit fixed point summation because fixed point
accumulation is associative (A+ B + C) == (C + A+ B)

*64-bit fixed point adds are also 32-bit instructions on NVIDIA
GPUs (that means they aren't stupid slow on consumer GPUSs)

Sparse AW __=XT * 9

L L+1

L+1

(One row of) X, (One row of) AW

L-L+1

Determinism

Consumer GPU failure rate is up to 20%

*Tesla GPU ECC only covers system memory, run twice

2 consumer GPUs cost $2400 versus $5000+ for a Tesla GPU
*Otherwise, race conditions become impossible to detect
*Otherwise, uninitialized variables become impossible to detect
eData Scientists can provide simple bug repros
*Non-deterministic behavior is a bug

e invest engineering hours upfront, save lots more later

Large Networks

“My belief is that we’re not going to get
human-level abllities until we have systems
that have the same number of parameters
In them as the brain.” - Geoffrey Hinton

Two Definitions

Data Parallel: Shard dataset(s) by example across all processors,
each of which has a full copy of the neural network model

Model Parallel: Shard neurons and parameters across all
pProcessors

Data

One O(D/N) Weird(er) Trick

Model Parallel Data Parallel

Model Model

Data

Model Parallel vs Data Parallel

Amazon Product Categories range from 10K to 10M items
*The Amazon Catalog is billions of items (Holy Grail)

*GPUs have up to 12 (2015) $ | mean 24 (2016) $$ oops | mean
32 GB (2016) $$$ of memory

All the interesting problems need >12 GB of memory ruling out
data-parallel

Data Parallel Implementation unacceptably slow for networks
with fully connected layers (GBs of weight gradients)

“Automagic” Model Parallel

*Uses the same JSON Object
1 GPU/process because reasons(tm) and simplicity

DSSTNE Engine automatically distributes the neural network
based on the number of processes running

trainer (serial job, 1 GPU)
mpirun -np 3 ./trainer (model parallel, 3 GPUSs)
mpirun -np n ./predictor (model parallel, n GPUSs)

One Weird Trick For Model Parallelism

To parallelize an SGEMM operation, first one shards the input
data across all N GPUs (N = 4 here)

»

Two Ways To Shard The Weights

LA~ 1 B i " s
3

Output Layer Larger Than Input Layer?
allGather* Input Layer Data Then SGEMM

*Using custom 2d allGather code, not NCCL/MPI

Input Layer Larger Than Output Layer?
SGEMM Then Reduce Outputs*

*Using custom 2D partial reduction code which is also O(n)

We can even mix math and communication

b2 f 2

R L

* Reduce the outputs over N-1 communication steps if the model outputs
are smaller than the model inputs

Both ways

L->L+1:

Ve L L

*Scatter the inputs over N-1 communication steps if the model inputs
are smaller than the model outputs

How Well Does it Work?

MovielLens 20M Sparse Data Epoch Times(s)

lower is better

= M40
m K80
K520 (g2.8xlarge)

TensorFlow Single GPU DSSTNE Single GPU DSSTNE Dual GPU DSSTNE Quad GPU DSSTNE 8 GPU

Yes Yes But How Good Are The
Recommendations?

*This Is a strange question IMO
DSSTNE runs the same mathematics as everyone else

Amazon OSSed the framework, not the actual networks, and
definitely not how they prepare customer purchase histories

«So for a surrogate, let's use the binary prediction of a random
80/20 split of the MovieLens 20M dataset

Competing numbers provided by Saul Vargas

MovieLens 20M DSSTNE

{

"Version" : 0.8,
"Name" : "AIV NNC",
"Kind" : "FeedForward",

"Shuffleindices" : false,

"ScaledMarginalCrossEntropy" : {
"oneTarget" : 1.0,
“"zeroTarget" : 0.0,
"oneScale" : 1.0,
"zeroScale" : 1.0

h
"Layers" : [

{"Name" : "Input", "Kind" : "Input", "N" : "auto", "DataSet" : “input", "Sparse" : true },

{"Name" : "Hidden1", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 1536, "Activation" : "Relu", "Sparse" : false, "pDropout" : 0.37, "WeightInit" : { "Scheme" : "Gaussian", "Scale" : 0.01 } },

{"Name" : "Hidden2", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 1536, "Activation" : "Relu", "Sparse" : false, “pDropout" : 0.37, "Weightlnit" : { "Scheme" : "Gaussian", "Scale" : 0.01 } },

{"Name" : "Hidden3", "Kind" : "Hidden", "Type" : "FullyConnected", "N" : 1536, "Activation" : "Relu", "Sparse" : false, "pDropout" : 0.37, "WeightInit" : { "Scheme" : "Gaussian", "Scale" : 0.01 } },

{"Name" : "Output”, "Kind" : "Output", "Type" : "FullyConnected", "DataSet" : "output”, "N" : "auto", "Activation" : "Sigmoid", "Sparse" : true , "WeightInit" : { "Scheme" : "Gaussian", "Scale" : 0.01, "Bias" : -10.2 }}

I8

"ErrorFunction” : "ScaledMarginalCrossEntropy"

}

MovieLens 20M P@10

Matrix Factorization DSSTHNE

https://github.com/RankSys/RankSys

Raw Performance

P@K

AWS Recommendations at Scale

*AWS released a blog by Kiuk Chung on how to perform product
recommendations with DSSTNE (and other frameworks BTW)
and Spark to experiment with deep learning for product
recommendations at scale

*This Iis the Amazon Deep Learning Recommendations System
minus the secret sauce networks, hyperparameters, and private
customer data

Recommendations At Scale: How Do They Work?

http://blogs.aws.amazon.com/bigdata/post/ TXGEL8IJOCAXTK/Generating-Recommendations-at-Amazon-Scale-with-Apache-Spark-and-Amazon-DSSTNE

DSSTNE At Scale Summary

*Use SPARK to set up and launch training and inference tasks
DSSTNE automagically scales each task based on process count
*And that's all folks...

Deep Learning For The 99%

“You have to spend at least $24,000(US) to be able
to run experiments on Atari or ImageNet
competitively.” - Nando de Freitas

P13N at Amazon
Developed DSSTNE and changed the way Amazon does recommendations with:
*A $3000 GTX 880M Laptop
*A $3000 GTX 980M Laptop
*A $2000 Desktop with two $1000 GTX TitanX GPUs
A bunch of AWS time on GK104 GPUs from 2012

The AMBERnNator (2013)*

*You'll need about $7000 and a couple hours to build this

Digits Dev Box (2015)*

*But you'll need $15,000 for this. Maybe you can tell me what justifies the extra $8000?

GPU O GPU 1 GPU 2 GPU 3

o~/ "

874 NRCIE Switch 874/ PCIE Fwitch

/'

CPU

P2P Ring Simplified

O(D) Collectives on Closed Ring

AllReduce: 2D(N-1)/N
Reduce: D(N-1)/N
Gather: D(N-1)/N
AllGather: D(N—-1)/N

D: Bytes of data to collect/reduce
N: Number of processors in use

Total Cost: $15*"H™H7,000 or less

Asus P9X79-E WS MB ($500) plus Intel
Core-i7 4820 (lvybridge) CPU ($320)

Asus X99-E WS MB ($520) plus Intel
Core-i7 5930K (Haswell) CPU ($560)

4 Titan XP GPUs ($4,800)
44 TFLOPs for $7,000! (<<%$24,000)
NVIDIA prefers for you to pay $15,000

What if $24K is Burning A Hole in Your Pocket?

25 GB/s of Bidirectional P2P Bandwidth

4 5 6

2495 2495 24.96

2496 2495 24.95

24.96 2496 24.95

24.94 2496 24.96

NA 24.94 24.95

NA 24.94

NA

GPU O GPU 1 GPU 2 GPU 3 GPU O GPU 1 GPU 2 GPU 3

]}GX I}Gx IlGx IéGx I}Gx]}6X Ié6x Ié6x

8796 PCIE Switch 8796 PCIE Switch

16x 16x

CPU

Craptastic Bandwidth
2 3
25.02 25.01
25.04 25.02
NA 25.02
NA

0
1
2
3
4
)
6
7

GPU O GPU 1 GPU 2 GPU 3

IlGx IlGx Il6x Il 6X

8796 PCIE Switch

16x I

CPU O

Access Denied

GPU O GPU 1 GPU 2 GPU 3

Il (554 Il6x Il6x Il6x

8796 PCIE Switch

16x I

CPU 1

Or Do You Need A $149K DGX-1? TLDR: No

85 TFLOPS FP32 (~10.6 TFLOPS per GPU) no FP16 for now
~64 GB/s connected in a cube (N == 8)*

Reduction: D*(N-1)/N
Gather: D*(N-1)/N
AllIReduce: D*2*(N-1)/N

But is your deep neural network really communication-limited?

AlexNet

dense dense

dense
1000

4096

Are you running data-parallel?

*AlexNet has ~61M parameters
*We'll assume a total batch size of 128 (16 images per GPU)
8 * 16 iImages/GPU trains in 14.56 ms* on GTX Titan XP

*On DGX-1, AllReducing 61M (244 MB) parameters at ~64 GB/s
IS ~6.7 ms (buried 5.5 ms of backprop for overlapping copy and
compute) for a final result of 1.2 ms.

*Using ~12.5 GB/s P2P, this would take ~34 ms

*https://github.com/jcjohnson/cnn-benchmarks

Alex Krizhevsky* to the Rescue!
(or should you also run model-parallel?)

*Of AlexNet's ~61M parameters. ~4.3M are convolutional (data-parallel) and
~56.7M of which are fully-connected (model-parallel)

Fully connected layers at a batch size of 128 is ~1.7M neurons

P2P allReduce of 4.3M parameters takes ~2.4 ms

*P2P gather/reduction of 1.7M neurons is ~0.5 ms

2.9 ms is << 14.56 ms so once again it's effectively free(tm)

It's also faster than NVLINK data-parallel...

‘NVLINK model-parallel would of course win here but it doesn't exist...

Similar arguments apply to INT16/INT8/FP16 and all the other greasy kids stuff

*https://arxiv.org/abs/1404.5997

One O(D/N) Weird(er) Trick

Model Parallel Data Parallel
:

Xl X3 * -
i
X

Data Parallel Model Parallel

HEEE
>

Implementation Matters (unless you're rich)

*Naive implementations of data-collectives are O(D log N) and/or reduce
weight gradients when there's a better way(tm)

Smart implementations are both O(D) and minimize communication costs

*GPUs connected to different CPUs cannot talk directly to each other
because Intel says so

«Just say no to Xeon Phi (but that's another talk)
*Keep an eye on AMD's Vega GPUs
*You don't need at least $24K, you need at most $24K (and the right code)

Should You Embrace DSSTNE?

Do you have a sparse data set? Yes

Do you want to experiment with large models? Yes

Do you want to run across multiple machines/GPUs? Yes
Do you want to scale up conv nets? Soon

Do you want to run Keras faster? Not yet

Do you want to run TensorFlow faster? Not yet

DSSTNE RoadMap

*Working on One Weird(er) Trick and General RNN (FoldFlow) support

*Compile DSSTNE under Radeon Open Compute (ROC) and truly
fulfill the promise of “CUDA Everywhere(tm)™

*Rather than port DSSTNE to OpenCL, AMD is porting CUDA to their
GPUs to get instant access to all existing OSS CUDA applications

*Provide a Python API through Python extensions (section 2.7.12)
*Keras/TensorFlow (XLA) import
«Automagic data streaming of models and data on SM 6.x and up

*https://github.com/RadeonOpenCompute

Summary

DSSTNE's automagic model-parallel training is a big win
DSSTNE's efficient sparse data processing is a big win
DSSTNE required bespoke GPU code rather than CUDA libraries

*AWS has released all the tools for using DSSTNE for
recommendations at scale

*Torch and Caffe have recently improved their sparse data support
*A lot of work-in-progress

Acknowledgments (DSSTNE/Amazon/AWS)

Rejith Joseph George
Kiuk Chung
Tristan Penman
Oleg Rybakov
Avishkar Misra
Jane You
Shruti Kamath
Mitchell Goodman
Cesar Romero
Jeff Bezos
Leo Dirac
Sebastian Gunningham
Srikanth Thirumulai
Henri Yandell
Matias Benitez

Acknowledgments (NVIDIA)

Jonathan Bentz
Mark Berger
Jerry Chen
Kate Clark
Simon Layton
Duncan Poole
Sarah Tarig

Acknowledgments (AMD/ROC)

Greg Stoner
Ben Sander
Michael Mantor

	Slide 1
	Slide 2
	Neural Networks
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Explicit Solvent Performance (JAC DHFR Production Benchmark)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

