
SQL	Server	on	Linux,	
will	it	perform?	

Slava	Oks

Thank	You!
Microsoft	Research

Windows	team

Midori

Our	goal	is	to	make	SQL	Server	perform	
and	scale	on	any	platform	or	hardware	of	

customers	choice

Prolog:	
Meet	the	PALs

• Modified	Windows	Kernel	to	run	in	user	mode,	aka	Library	OS	or	LibOS

• Designed	for	running	on	Windows	and	leverages	Pico-process	feature

• Pico-process	is	a	NT	process	with	empty	address	space	

Intro	to	Drawbridge:	A	container	technology	
to	achieve	isolation,	security	and	density	in	the	cloud

NT process
shared

address space

user32
gdi32

ntdll

ho
st

O

S ntoskr
nl

win32k

400+
NT calls

800+
Win32 calls

Picoprocess
picoprocess

isolated
address space

ABI
boundaryPAL

ho
st

O

S security monitor

ntoskrnl

45
calls

• All	1200+	system	calls	blocked	from	user-
mode	(NTOS	and	win32k)

• Enforced	by	35-line	change	to	
KiSystemServiceHandler

• No	perf	impact	to	other	processes	—
leverages	“slow	path”	used	by	UMS

• 45	new	system	calls	added	to	process	
(Drawbridge	system	calls)

• Even	hard-coded	traps	can’t	break	out

NT UM

LibOS:	A	user	mode	runtime	library	
exposing	semantics	of	Windows	kernel

Network
Stack

I/O

Object
Manager

Process
Manager

DRTL
Simple HeapUnion FS

AFD

Wait
Pool

Threads Memory
Manager

Loader

PEB/TEB

PAL ABI Handler

Sync Objects ThreadsStreams Memory Manager

APC

• Storage	Manager	

• Asynchronous	I/O	submitted	to	the	host	and	registered	with	WaitPool threads

• On	completion	WaitPool threads	deliver	I/Os to	the	original	thread	through	APC

• Original	threads	deliver	I/Os to	their	final	destination		

• Network	Manager

• Custom	version	of	AFD	(WinSock	semantics)	with	a	thread	pool

• AFD	Asynchronous	I/O	submitted	to	the	host	and	registered	with	WaitPool
threads

• On	completion	WaitPool threads	deliver	I/Os to	AFD	threads	through	APC

• threads	deliver	network	requests	to	original	threads	initiated	I/O	through	APC

• Original	threads	deliver	I/Os to	their	final	destination

• I/O	General

• No	proper	support	for	Scatter/Gather	

• Memory	Manager	

• Global	Virtual	Address	Descriptor	(VAD)	list	

• Global	Heap

• Object	Manager

• Global	Directory

• Process	Manager

• Per	process	runtime	libraries	– no	image	sharing

• Threads

• APCs	“injection”	through	polling		

SQL	OS	(SOS):	A	user	mode	runtime	library	providing	
performance,	scalability	and	diagnostic	

foundation	for	SQL	Server

Memory Node

CPU Node

…

Network
Manager

Scheduler

Storage
Manager

Scheduler

Storage
Manager

CPU Node

…

Network
Manager

Scheduler

Storage
Manager

Scheduler

Storage
Manager

…

• Network	Manager	

• I/O	completion	port/thread	per	CPU	Node	

• Asynchronous	delivery

• Storage	Manager	

• I/O	queue	per	scheduler

• Synchronous	delivery	through	periodic	polling	

• Memory	Manager	/	Object	Manager	/	Scheduling	Manager	

• NUMA	awareness	

• Partitioned	heaps	

• Non-preemptive	scheduling	&	User	Mode	Threads

• Synchronization	primitives

Chapter	1:
SQL	&	PALs

The	marriage	in	heaven	or…

SQL	Server	On	Top	Of	PALs

Ring	3

SQL	Server

SQLOS

Win32

Lib	OS

PAL

Ring	0 Linux	Kernel

Drawbridge

Technologies SQL LibOS Host Extension

Object Management ✔ ✔ ✔

Memory	Management ✔ ✔ ✔

Threading/Scheduling ✔ ✔ ✔

Synchronization ✔ ✔ ✔

I/O	(Disk,	Network) ✔ ✔ ✔

Chapter	2:
The	sign	is	on	the	wall

Introducing	Intelligent	Hacks

• Kernel	aio

• Pump	threads	vs	
WaitPool threads

• Fast	I/O

// We can do Fast I/O if and only if it follows rules employed by SQL Server
// disk I/O: which is delivered nonpreemptively through polling an overlapped
// data structure
// - I/O is asynchronous
// - No user mode APC required
// - No I/O completion port specified
// - Contains an event to be signaled (leveraged by SQL Server to wake up idle scheduler
// - Disk I/O
//

canDoFastIO = WaitForCompletion == FALSE;

canDoFastIO = canDoFastIO && (ApcRoutine == NULL && FileObject != NULL);

canDoFastIO = canDoFastIO && (Args->SkipCompletionPort ||
NtpGetCompletionPortObject(FileObject,

&CompletionKey) == NULL);

canDoFastIO = canDoFastIO && (Args->EventObject != NULL && IoStatusBlock != NULL);

canDoFastIO = canDoFastIO && (NtpGetObjectType(Args->Object) == NTUM_FILE &&
NtpIsIoAsynchronous(Args->Object));

canDoFastIO = canDoFastIO && ((FileObject->Type & NtpSeekableFile) &&
(Type == NTUM_IO_READ ||
Type == NTUM_IO_WRITE ||
Type == NTUM_IO_WRITE_GATHER ||
Type == NTUM_IO_READ_SCATTER));

// If it is Gather/Scatter I/O then length can't exceed DK_UIO_MAXIOV supported by the Host
//
canDoFastIO = canDoFastIO && (!(Type == NTUM_IO_WRITE_GATHER ||

Type == NTUM_IO_READ_SCATTER) ||
Length <= DK_UIO_MAXIOV);

• Pump	threads	vs	WaitPool

• Fast	I/O	~	AFD	pass	through

• SQLOS	completion	threads	
are	pump	threads	~	no	
context	switch	on	
completion	

// Complete I/Os received via the the IOPort are submitted to the I/O
// completion port queue
Status = NtpTryToProcessIoCompletion(IoCompletionPort,

IoCompletionInformation);

// Process any APCs or interruptions for this thread. //
NtpProcessKernelApc(threadObject);

Request.IOPort = IoCompletionPort->IOPort;
Request.PendingIOs = &PendingIOs;

Status = DrtlReadStreamSync(IoCompletionPort->Stream,
0,
0,
(PVOID)&Request,
NULL);

while (PendingIOs != NULL)
{

//
// Remember I/O to complete and move to the next I/O before
// we complete the current one since by the time we return from
// completion routine the completed I/O will be freed
//
CompletedIO = PendingIOs;
PendingIOs = (PDK_ASYNC_RESULTS_LINKED)PendingIOs->Next;

//
// Complete I/O
//
NtpCompleteNetworkIoRequest((PNTUM_IO_REQUEST)CompletedIO->Request);

}

• Multiple	Heaps	

• I/O	Request	free	list	per	thread

• Per	process	Virtual	Address	
Space	Manager		

• NUMA	support	

• Processor	Affinity						

PVOID
DrtlAllocate(

__in ULONG Flags,
__in SIZE_T Size,
__in ULONG Tag
)

{
ULONG heapIdx;

//
// Early boot we might not have a thread
//
heapIdx = DrtlGetCurrentThreadId() % g_DrtlNumberHeaps;

return DrtlpAllocate(&g_DrtlHeaps[heapIdx], Flags, Size, Tag);
}

NtpAllocateIORequestRaw(
__in NTUM_IO_TYPE Type)

{

// Use cache if we have i/O request
//
LocalRequest = (PNTUM_IO_REQUEST)ExpInterlockedPopEntrySList(

&RequestingThread->IORequestsCache);

// If the cache was empty allocate a new request structure.
//
if (LocalRequest == NULL)
{

LocalRequest = (PNTUM_IO_REQUEST)ExAllocatePoolWithTag(
PagedPool,
sizeof(*LocalRequest),
' PRI');

}

Chapter	3:	
Pressure	is	On

Hardware	Configuration
Power	Settings:	OS	Control	power	option,	High	Performance	in	OS,	HT	OFF,	Turbo	boost	OFF
Network:	1x10	GB	Network	connection	per	machine
Machine configuration	(server	and	client):	Gen3	systems
Model/Processors:	Intel	Xeon	CPU	E5-2660	0	@	2.20	GHz	(2S/16C),	Memory:	128	GB
Storage:	4x447.13	GB	SSDs.	All	SSDs	are	striped	together	and	mounted	as	1	volume.	Both	data	

and	log	are	stored	on	this	volume.

Hardware	Configuration
Power	Settings:	OS	Control	power	option,	High	Performance	in	OS,	HT	OFF,	Turbo	boost	OFF
Network:	1x10	GB	Network	connection	per	machine
Machine configuration	(server	and	client):	4S	systems	(for	TPCC	test)
Model/Processors:	Intel	Xeon	CPU	E7-4850	0	@	2.00	GHz	(4S/40C),	Memory:	768	GB
Data	Storage:	2x1.46	TB	GB	Fusion	IO	disk.	All	disks	are	striped	together	and	mounted	as	1	volume.	
Log	Storage:	1x5.54	TB	HDD

Chapter	4:
The	ultimate	PAL

Introducing	SQLPAL

Principles:	

• Remove	redundancy

• Optimize	Performance	critical	paths	(I/O)

• Shrink	code	path-length	LibOS	and	Win32

Technologies SQL SOSv2 Host Extension

Object Management ❌ ✔ ❌

Memory	Management ❌ ✔ ✔Host	translation	(jemalloc)

Threading/Scheduling ❌ ✔ ✔Host	translation	(pthreads)

Synchronization ❌ ✔ ✔Host	translation	(condition	variables)

I/O	(Disk,	Network) ❌ ✔ ✔Host	translation	(kaio)

Ring	3

SQL	Server
Win32

SOSv2Lib-OS

Host	Extension

Ring	0 Linux	Kernel

SQLPAL

SQL	PAL	and	SOSv2	Architecture

Host	Extension	and	Integration HE	Debugger	
Bridge

SOSv2	(Memory,	Scheduling,	Synchronization)

Storage	
Manager

Network	
Manager

Resource	
Manager

Process	
Manager

Security	
Manager

Availabilit
y	Manager

NT	User	Mode

Config
Manager

PAL	Debugger	
Extension

Hosted	Windows	APIs

SQL	Server

SOS	Direct	APIs

Chapter	5
Natural	Habita(n)t		

Linux	Process	Layout

•Host	Extension	is	native	Linux	process

• The	Host	Extension	loads	the	SQLPAL	
native	Windows	library

• SQLPAL	loads	SQL	Server	into	a	virtual	
Windows	Process.

SQL	Server
(Windows	
Binary)

LibOS
(Windows	Kernel	in	User	Mode)

Host	Extension
(Linux	or	OS	X)

Win32	Calls	
(1200+)

ABI	Calls	(50)

Linux	or	OS	X	OS	Calls

Linux	or	OS	X	OS

LL
DB

	D
eb

ug
ge
r

Debugger

• Debugger	bridge	for	Windbg

• For	most	scenarios	debugging	is	identical	to	Windows

• Live	Debugging

• Start	SQL	on	Linux	under	debugger	bridge

• Attach	with	Windbg

• Dscripts etc.	work	same	as	against	Windows

• Crash	Dump

• Run	debugger	bridge	passing	in	crash	dump	file

• Attach	with	Windbg and	it’s	the	same	as	
Windows

• Extract	Windows	dump	from	Linux	Core	dump

• Able	to	extract	a	Windows	dump	from	Linux	core	
dump

• Loses	Linux	information

• Linux	Enlightenment

• The	debugger	extension	also	adds	commands	to	debug	
Linux	parts	of	the	PAL

• Commands	mirror	normal	Windbg commands

• Examples:
• ‘k’	shows	Windows	stack
• ‘!k’	shows	Linux	stack
• Same	for	dv	(!dv),	dt (!dt),	etc.
• Source	can	be	listed	and	source	stepping	works

• VTune is	a	cross	platform	performance	tool

• Process

• Capture	on	Linux	and	resolve	on	Linux

• Copy	the	project	to	Windows

• Resolve	symbols	and	rerun	analysis

• This	adds	the	Windows	information	to	
the	project

• After	processing	all	the	code	is	available	for	
analysis:	Linux	code,	sqlpal.dll,	Win32,	and	SQL

Chapter	6:
The	game	is	ON

Thank	You

