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Our	goal	is	to	make	SQL	Server	perform	
and	scale	on	any	platform	or	hardware	of	

customers	choice



Prolog:	
Meet	the	PALs



• Modified	Windows	Kernel	to	run	in	user	mode,	aka	Library	OS	or	LibOS

• Designed	for	running	on	Windows	and	leverages	Pico-process	feature

• Pico-process	is	a	NT	process	with	empty	address	space	

Intro	to	Drawbridge:	A	container	technology	
to	achieve	isolation,	security	and	density	in	the	cloud
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• All	1200+	system	calls	blocked	from	user-
mode	(NTOS	and	win32k)

• Enforced	by	35-line	change	to	
KiSystemServiceHandler

• No	perf	impact	to	other	processes	—
leverages	“slow	path”	used	by	UMS

• 45	new	system	calls	added	to	process	
(Drawbridge	system	calls)

• Even	hard-coded	traps	can’t	break	out



NT UM

LibOS:	A	user	mode	runtime	library	
exposing	semantics	of	Windows	kernel
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• Storage	Manager	

• Asynchronous	I/O	submitted	to	the	host	and	registered	with	WaitPool threads

• On	completion	WaitPool threads	deliver	I/Os to	the	original	thread	through	APC

• Original	threads	deliver	I/Os to	their	final	destination		

• Network	Manager

• Custom	version	of	AFD	(WinSock	semantics)	with	a	thread	pool

• AFD	Asynchronous	I/O	submitted	to	the	host	and	registered	with	WaitPool
threads

• On	completion	WaitPool threads	deliver	I/Os to	AFD	threads	through	APC

• threads	deliver	network	requests	to	original	threads	initiated	I/O	through	APC

• Original	threads	deliver	I/Os to	their	final	destination

• I/O	General

• No	proper	support	for	Scatter/Gather	



• Memory	Manager	

• Global	Virtual	Address	Descriptor	(VAD)	list	

• Global	Heap

• Object	Manager

• Global	Directory

• Process	Manager

• Per	process	runtime	libraries	– no	image	sharing

• Threads

• APCs	“injection”	through	polling		



SQL	OS	(SOS):	A	user	mode	runtime	library	providing	
performance,	scalability	and	diagnostic	

foundation	for	SQL	Server
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• Network	Manager	

• I/O	completion	port/thread	per	CPU	Node	

• Asynchronous	delivery

• Storage	Manager	

• I/O	queue	per	scheduler

• Synchronous	delivery	through	periodic	polling	

• Memory	Manager	/	Object	Manager	/	Scheduling	Manager	

• NUMA	awareness	

• Partitioned	heaps	

• Non-preemptive	scheduling	&	User	Mode	Threads

• Synchronization	primitives



Chapter	1:
SQL	&	PALs

The	marriage	in	heaven	or…



SQL	Server	On	Top	Of	PALs

Ring	3

SQL	Server

SQLOS

Win32

Lib	OS

PAL

Ring	0 Linux	Kernel

Drawbridge

Technologies SQL LibOS Host Extension

Object Management ✔ ✔ ✔

Memory	Management ✔ ✔ ✔

Threading/Scheduling ✔ ✔ ✔

Synchronization ✔ ✔ ✔

I/O	(Disk,	Network) ✔ ✔ ✔



Chapter	2:
The	sign	is	on	the	wall

Introducing	Intelligent	Hacks



• Kernel	aio

• Pump	threads	vs	
WaitPool threads

• Fast	I/O

// We can do Fast I/O if and only if it follows rules employed by SQL Server
// disk I/O: which is delivered nonpreemptively through polling an overlapped
// data structure
//  - I/O is asynchronous
//  - No user mode APC required
//  - No I/O completion port specified
//  - Contains an event to be signaled (leveraged by SQL Server to wake up idle scheduler
//  - Disk I/O
//

canDoFastIO = WaitForCompletion == FALSE;

canDoFastIO = canDoFastIO && (ApcRoutine == NULL && FileObject != NULL);

canDoFastIO = canDoFastIO && (Args->SkipCompletionPort ||
NtpGetCompletionPortObject(FileObject,

&CompletionKey) == NULL);

canDoFastIO = canDoFastIO && (Args->EventObject != NULL && IoStatusBlock != NULL);

canDoFastIO = canDoFastIO && (NtpGetObjectType(Args->Object) == NTUM_FILE &&
NtpIsIoAsynchronous(Args->Object));

canDoFastIO = canDoFastIO && ((FileObject->Type & NtpSeekableFile) &&
(Type == NTUM_IO_READ ||
Type == NTUM_IO_WRITE ||
Type == NTUM_IO_WRITE_GATHER ||
Type == NTUM_IO_READ_SCATTER));

// If it is Gather/Scatter I/O then length can't exceed DK_UIO_MAXIOV supported by the Host
//
canDoFastIO = canDoFastIO && (!(Type == NTUM_IO_WRITE_GATHER ||

Type == NTUM_IO_READ_SCATTER) ||
Length <= DK_UIO_MAXIOV);



• Pump	threads	vs	WaitPool

• Fast	I/O	~	AFD	pass	through

• SQLOS	completion	threads	
are	pump	threads	~	no	
context	switch	on	
completion	

// Complete I/Os received via the the IOPort are submitted to the I/O
// completion port queue
Status = NtpTryToProcessIoCompletion(IoCompletionPort,

IoCompletionInformation);

// Process any APCs or interruptions for this thread. //
NtpProcessKernelApc(threadObject);

Request.IOPort = IoCompletionPort->IOPort;
Request.PendingIOs = &PendingIOs;

Status = DrtlReadStreamSync(IoCompletionPort->Stream,
0,
0,
(PVOID)&Request,
NULL);

while (PendingIOs != NULL)
{

//
// Remember I/O to complete and move to the next I/O before
// we complete the current one since by the time we return from
// completion routine the completed I/O will be freed
//
CompletedIO = PendingIOs;
PendingIOs = (PDK_ASYNC_RESULTS_LINKED)PendingIOs->Next;

//
// Complete I/O
//
NtpCompleteNetworkIoRequest((PNTUM_IO_REQUEST)CompletedIO->Request);

}



• Multiple	Heaps	

• I/O	Request	free	list	per	thread

• Per	process	Virtual	Address	
Space	Manager		

• NUMA	support	

• Processor	Affinity						

PVOID
DrtlAllocate(

__in ULONG  Flags,
__in SIZE_T Size,
__in ULONG  Tag
)

{
ULONG heapIdx;

//
// Early boot we might not have a thread
//
heapIdx = DrtlGetCurrentThreadId() % g_DrtlNumberHeaps;

return DrtlpAllocate(&g_DrtlHeaps[heapIdx], Flags, Size, Tag);
}

NtpAllocateIORequestRaw(
__in NTUM_IO_TYPE Type)

{

// Use cache if we have i/O request
//
LocalRequest = (PNTUM_IO_REQUEST)ExpInterlockedPopEntrySList(

&RequestingThread->IORequestsCache);

// If the cache was empty allocate a new request structure.
//
if (LocalRequest == NULL)
{

LocalRequest = (PNTUM_IO_REQUEST)ExAllocatePoolWithTag(
PagedPool,
sizeof(*LocalRequest),
' PRI');

}



Chapter	3:	
Pressure	is	On



Hardware	Configuration
Power	Settings:	OS	Control	power	option,	High	Performance	in	OS,	HT	OFF,	Turbo	boost	OFF
Network:	1x10	GB	Network	connection	per	machine
Machine configuration	(server	and	client):	Gen3	systems
Model/Processors:	Intel	Xeon	CPU	E5-2660	0	@	2.20	GHz	(2S/16C),	Memory:	128	GB
Storage:	4x447.13	GB	SSDs.	All	SSDs	are	striped	together	and	mounted	as	1	volume.	Both	data	

and	log	are	stored	on	this	volume.



Hardware	Configuration
Power	Settings:	OS	Control	power	option,	High	Performance	in	OS,	HT	OFF,	Turbo	boost	OFF
Network:	1x10	GB	Network	connection	per	machine
Machine configuration	(server	and	client):	4S	systems	(for	TPCC	test)
Model/Processors:	Intel	Xeon	CPU	E7-4850	0	@	2.00	GHz	(4S/40C),	Memory:	768	GB
Data	Storage:	2x1.46	TB	GB	Fusion	IO	disk.	All	disks	are	striped	together	and	mounted	as	1	volume.	
Log	Storage:	1x5.54	TB	HDD



Chapter	4:
The	ultimate	PAL



Introducing	SQLPAL

Principles:	

• Remove	redundancy

• Optimize	Performance	critical	paths	(I/O)

• Shrink	code	path-length	LibOS	and	Win32

Technologies SQL SOSv2 Host Extension

Object Management ❌ ✔ ❌

Memory	Management ❌ ✔ ✔Host	translation	(jemalloc)

Threading/Scheduling ❌ ✔ ✔Host	translation	(pthreads)

Synchronization ❌ ✔ ✔Host	translation	(condition	variables)

I/O	(Disk,	Network) ❌ ✔ ✔Host	translation	(kaio)
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SQL	PAL	and	SOSv2	Architecture
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Chapter	5
Natural	Habita(n)t		



Linux	Process	Layout

•Host	Extension	is	native	Linux	process

• The	Host	Extension	loads	the	SQLPAL	
native	Windows	library

• SQLPAL	loads	SQL	Server	into	a	virtual	
Windows	Process.
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Debugger

• Debugger	bridge	for	Windbg

• For	most	scenarios	debugging	is	identical	to	Windows

• Live	Debugging

• Start	SQL	on	Linux	under	debugger	bridge

• Attach	with	Windbg

• Dscripts etc.	work	same	as	against	Windows

• Crash	Dump

• Run	debugger	bridge	passing	in	crash	dump	file

• Attach	with	Windbg and	it’s	the	same	as	
Windows

• Extract	Windows	dump	from	Linux	Core	dump

• Able	to	extract	a	Windows	dump	from	Linux	core	
dump

• Loses	Linux	information

• Linux	Enlightenment

• The	debugger	extension	also	adds	commands	to	debug	
Linux	parts	of	the	PAL

• Commands	mirror	normal	Windbg commands

• Examples:
• ‘k’	shows	Windows	stack
• ‘!k’	shows	Linux	stack
• Same	for	dv	(!dv),	dt (!dt),	etc.
• Source	can	be	listed	and	source	stepping	works



• VTune is	a	cross	platform	performance	tool

• Process

• Capture	on	Linux	and	resolve	on	Linux

• Copy	the	project	to	Windows

• Resolve	symbols	and	rerun	analysis

• This	adds	the	Windows	information	to	
the	project

• After	processing	all	the	code	is	available	for	
analysis:	Linux	code,	sqlpal.dll,	Win32,	and	SQL



Chapter	6:
The	game	is	ON



Thank	You


