
Eugene Kirpichov
Senior Software Engineer

No Shard Left Behind
Straggler-free data processing in Cloud Dataflow

Google Cloud Platform 2

W
or

ke
rs

Time

Google Cloud Platform 3

Plan

Autoscaling
Why dynamic rebalancing really matters

If you remember two things
Philosophy of everything above

01

02

03

Intro
Setting the stage

Stragglers
Where they come from and
how people fight them

Dynamic rebalancing
1 How it works 2 Why is it hard

04

05

01 Intro
Setting the stage

Google Cloud Platform 6

Google’s data processing timeline

20122002 2004 2006 2008 2010

MapReduce

GFS Big Table

Dremel

Pregel

FlumeJava

Colossus

Spanner

2014

MillWheel

Dataflow

2016

Apache Beam

Google Cloud Platform 7

 Pipeline p = Pipeline.create(options);

 p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))

 .apply(FlatMapElements.via(

 word → Arrays.asList(word.split("[^a-zA-Z']+"))))

 .apply(Filter.byPredicate(word → !word.isEmpty()))

 .apply(Count.perElement())

 .apply(MapElements.via(

 count → count.getKey() + ": " + count.getValue())

 .apply(TextIO.Write.to("gs://.../..."));

 p.run();

WordCount

Google Cloud Platform 8

A

K, V

B

K, [V]

DoFn: A → [B]ParDo

GBKGroupByKey

MapReduce = ParDo + GroupByKey + ParDo

Google Cloud Platform 9

DoFn

DoFn

DoFn

Running a ParDo

shard 1

shard 2

shard N

DoFn

Google Cloud Platform 10

Gantt charts

shard N

W
or

ke
rs

Time

Google Cloud Platform 11

Large WordCount:
Read files, GroupByKey, Write files.

40
0

w
or

ke
rs

20 minutes

02 Stragglers
Where they come from, and how people fight them

Google Cloud Platform 13

Stragglers
W

or
ke

rs

Time

Google Cloud Platform 14

Amdahl’s law: it gets worse at scale

Higher scale ⇒ More bottlenecked by serial parts.

#workers

serial fraction

Google Cloud Platform 15

Process dictionary
in parallel by first letter:

⅙ words start with ‘t’ ⇒
< 6x speedup

Where do stragglers come from?

Spuriously slow external
RPCs

Bugs

Join Foos / Bars,
in parallel by Foos.

Some Foos have ≫
Bars than others.

Bad machines

Bad network

Resource contention

Uneven resources NoiseUneven partitioning Uneven complexity

Google Cloud Platform 16

Oversplit

Hand-tune

Use data statistics

What would you do?

Uneven resources

Backups

Restarts

NoiseUneven partitioning Uneven complexity

Predictive ⇒ Unreliable Weak

Google Cloud Platform 17

These kinda work. But not really.

Manual tuning = Sisyphean task
Time-consuming, uninformed, obsoleted by data drift
⇒ Almost always tuned wrong

Statistics often missing / wrong
Doesn’t exist for intermediate data

Size != complexity

Backups/restarts only address slow workers

Confidential & ProprietaryGoogle Cloud Platform 18

Upfront heuristics don’t work: will predict wrong.
Higher scale → more likely.

Confidential & ProprietaryGoogle Cloud Platform 19

High scale triggers worst-case behavior.

Corollary: If you’re bottlenecked by worst-case behavior, you won’t scale.

03.1 Dynamic rebalancing
How it works

Google Cloud Platform 21

Detect and fight stragglers
W

or
ke

rs

Time

Google Cloud Platform 22

What is a straggler, really?
W

or
ke

rs

Time

Slower than perfectly-parallel:

tend > sum(tend) / N

Google Cloud Platform 23

Split stragglers, return residuals into pool of work
W

or
ke

rs

Time

Now Avg completion time

100 130 200
foo.txt

170

100 200170 170

keep running schedule

(cheap, atomic)

Google Cloud Platform 24

Rinse, repeat (“liquid sharding”)
W

or
ke

rs

Time

Now Avg completion time

Google Cloud Platform 25

1 ParDo

Skewed

24 workers

ParDo/GBK/ParDo

Uniform

400 workers

50% 25%

Confidential & ProprietaryGoogle Cloud Platform 26

Get out of trouble > avoid trouble

Adaptive > Predictive

03.2 Dynamic rebalancing
Why is it hard?

Google Cloud Platform 28

And that’s it? What’s so hard?

Wait-free

Perfect granularity

What can be split?

Data consistency

Not just files

APIs

Non-uniform density

Stuckness

“Dark matter”

Making predictions

Testing consistency

Debugging

Measuring quality

Being sure it worksSemantics Quality

Google Cloud Platform 29

What is splitting

foo.txt [100, 200)

foo.txt [100, 170) foo.txt [170, 200)

split at 170

Google Cloud Platform 30

What is splitting: Associativity

[A, B) + [B, C) = [A, C)

Google Cloud Platform 31

What is splitting: Rounding up

[A, B) = records starting in [A, B)

Random access

⇒ Can split without scanning data!

Google Cloud Platform 32

What is splitting: Rounding up

[A, B) = records starting in [A, B)

Random access

⇒ Can split without scanning data!

ap
pl

e
be

et
fig gr

ap
e

ki
w

i
lim

e
pe

ar
ro

se

sq
ua

sh

va
ni

lla

 [a, h) [h, s) [s, $)

ap
pl

e
be

et
fig gr

ap
e

ki
w

i
lim

e
pe

ar
ro

se

sq
ua

sh

va
ni

lla

Google Cloud Platform 33

What is splitting: Blocks

[A, B) = records in blocks starting in [A, B)

Google Cloud Platform 34

What is splitting: Readers

foo.txt [100, 200)

foo.txt [100, 170) foo.txt [170, 200)

split at 170

“Reader”

Re-reading consistency:
continue until EOF = re-read shard

Google Cloud Platform 35

Dynamic splitting: readers

read not yet read

not ok ok

e.g. can’t split an arbitrary SQL query

X = last record read:
Exact, Increasing

Confidential & ProprietaryGoogle Cloud Platform 36

[A, B) = blocks of records starting in [A, B)
[A, B) + [B, C) = [A, C)
Random access
⇒ No scanning needed to split

Reading repeatable, ordered by position, positions exact

Google Cloud Platform 37

Concurrency when splitting

Read Process ...

time

should I split? ? ? ?

While we wait, 1000s of workers idle.
Per-element processing
in O(hours) is common!

Google Cloud Platform 38

Concurrency when splitting

Read Process ...

Read Process ...

 split! ok.

Split wait-free (but race-free), while processing/reading.
see code: RangeTracker

Per-element processing
in O(hours) is common!

 split! ok.

should I split? ? ? ?

While we wait, 1000s of workers idle.

Google Cloud Platform 39

Perfectly granular splitting

“Few records, heavy processing” is common.

⇒ Perfect parallelism required

Confidential & ProprietaryGoogle Cloud Platform 40

Separation:
ParDo { record → sleep(∞) } parallelized

perfectly
(requires wait-free + perfectly granular)

Google Cloud Platform 41

Separation is a qualitative improvement

/path/to/foo*.txt
ParDo:
expand

glob

foo5.txt

foo42.txt

foo8.txt

foo100.txt

foo91.txt

ParDo:
read

records

perfectly parallel
over files

perfectly parallel
over records

infinite scalability
(no “shard per file”)

foo26.txt

foo87.txt

foo56.txt

See also: Splittable DoFn
http://s.apache.org/splittable-do-fn

http://s.apache.org/splittable-do-fn
http://s.apache.org/splittable-do-fn

Confidential & ProprietaryGoogle Cloud Platform 42

“Practical” solutions improve performance

“No compromise” solutions reduce dimension
of the problem space

Google Cloud Platform 43

Google Cloud Platform 44

Making predictions: easy, right?

100 130 200
~30% complete: 130 / [100, 200) = 0.3
Split at 70%: 0.7 [100, 200) = 170

ap
pl

e
be

et
fig gr

ap
e

ki
w

i

~50% complete: k / [a, z) ≈ 0.5
Split at 70%: 0.7 [a, z) ≈ t

t

70%

Google Cloud Platform 45

100%

t

Progress
100%

t

Progress

100%

t

Progress
100%

t

Progress
100%

Progress

t

Easy; usually too good to be true.

100%

t100%
t

Progress

tx

px

Confidential & ProprietaryGoogle Cloud Platform 46

Accurate predictions = wrong goal, infeasible.
Wildly off ⇒ System should still work
Optimize for emergent behavior (separation)
Better goal: detect stuckness

Google Cloud Platform 47

Heavy work that you
don’t know exists, until
you hit it.

Goal: discover and
distribute dark matter as
quickly as possible.

(Image credit: NASA)

Dark matter

47

04 Autoscaling
Why dynamic rebalancing really matters

49

How much work will there be?
Can’t predict: data size, complexity, etc.

What should you do?
Adaptive > Predictive.
Keep re-estimating total work; scale up/down

(Image credit: Wikipedia)

A lot of work ⇒ A lot of workers

49

50

Start off with 3 workers,
things are looking okay

10m

3 days

Re-estimation ⇒ orders of
magnitude more work:
need 100 workers!

92 workers idle

100 workers useless
without 100 pieces of work!

Google Cloud Platform 51

Now scaling up is no big deal!
Add workers
Work distributes itself

Job smoothly scales 3 → 1000 workers.

Autoscaling + dynamic rebalancing

Waves of
splitting

Upscaling &
VM startup

05 If you remember two things
Philosophy of everything above

Google Cloud Platform 53

Reducing dimension > Incremental improvement

“Corner cases” are clues that you’re still compromising

If you remember two things

Adaptive > Predictive

“No compromise” solutions matter

Fighting stragglers > Preventing stragglers

Emergent behavior > Local precision

wait-free

perfectly granular
separation

heavy records

reading-as-ParDo

rebalancing autoscaling reusability

Confidential & ProprietaryGoogle Cloud Platform 54

Thank you
Q&A

Google Cloud Platform 55

Apache Beam

No shard left behind: Dynamic work rebalancing in Cloud Dataflow

Comparing Cloud Dataflow Autoscaling to Spark and Hadoop

Splittable DoFn

Documentation on Dataflow/Beam source APIs

References

http://beam.apache.org/
http://beam.apache.org/
https://cloud.google.com/blog/big-data/2016/05/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/big-data/2016/05/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/big-data/2016/03/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
https://cloud.google.com/blog/big-data/2016/03/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
http://s.apache.org/splittable-do-fn
http://s.apache.org/splittable-do-fn
https://cloud.google.com/dataflow/model/custom-io-java
https://cloud.google.com/dataflow/model/custom-io-java

