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01 Intro
Setting the stage
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Google’s data processing timeline

20122002 2004 2006 2008 2010

MapReduce

GFS Big Table

Dremel

Pregel

FlumeJava

Colossus

Spanner

2014

MillWheel

Dataflow

2016

Apache Beam
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   Pipeline p = Pipeline.create(options);

   p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))

    .apply(FlatMapElements.via(

        word → Arrays.asList(word.split("[^a-zA-Z']+"))))

    .apply(Filter.byPredicate(word → !word.isEmpty()))

    .apply(Count.perElement())

    .apply(MapElements.via(

        count → count.getKey() + ": " + count.getValue())

    .apply(TextIO.Write.to("gs://.../..."));

   p.run();

WordCount
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A

K, V

B

K, [V]

DoFn: A → [B]ParDo

GBKGroupByKey

MapReduce = ParDo + GroupByKey + ParDo
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DoFn

DoFn

DoFn

Running a ParDo

shard 1

shard 2

shard N

DoFn



Google Cloud Platform 10

Gantt charts

shard N
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Large WordCount:
Read files, GroupByKey, Write files.
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02 Stragglers
Where they come from, and how people fight them
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Amdahl’s law: it gets worse at scale

Higher scale ⇒ More bottlenecked by serial parts.

#workers

serial fraction
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Process dictionary
in parallel by first letter:

⅙ words start with ‘t’ ⇒ 
< 6x speedup

Where do stragglers come from?

Spuriously slow external 
RPCs

Bugs

Join Foos / Bars,
in parallel by Foos.

Some Foos have ≫ 
Bars than others.

Bad machines

Bad network

Resource contention

Uneven resources NoiseUneven partitioning Uneven complexity
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Oversplit

Hand-tune

Use data statistics

What would you do?

Uneven resources

Backups

Restarts

NoiseUneven partitioning Uneven complexity

Predictive ⇒ Unreliable Weak
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These kinda work. But not really.

Manual tuning = Sisyphean task
Time-consuming, uninformed, obsoleted by data drift
⇒ Almost always tuned wrong

Statistics often missing / wrong
Doesn’t exist for intermediate data

Size != complexity

Backups/restarts only address slow workers
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Upfront heuristics don’t work: will predict wrong.
Higher scale → more likely.
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High scale triggers worst-case behavior.

Corollary: If you’re bottlenecked by worst-case behavior, you won’t scale.



03.1 Dynamic rebalancing
How it works
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What is a straggler, really?
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Slower than perfectly-parallel:

tend > sum(tend) / N
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Split stragglers, return residuals into pool of work
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Now Avg completion time

100 130 200
foo.txt

170

100 200170 170

keep running schedule

(cheap, atomic)
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Rinse, repeat (“liquid sharding”)
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1 ParDo

Skewed

24 workers

ParDo/GBK/ParDo

Uniform

400 workers

50% 25%
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Get out of trouble > avoid trouble

Adaptive > Predictive



03.2 Dynamic rebalancing
Why is it hard?
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And that’s it? What’s so hard?

Wait-free

Perfect granularity 

What can be split?

Data consistency

Not just files

APIs

Non-uniform density 

Stuckness

“Dark matter”

Making predictions

Testing consistency

Debugging

Measuring quality

Being sure it worksSemantics Quality



Google Cloud Platform 29

What is splitting

foo.txt [100, 200)

foo.txt [100, 170) foo.txt [170, 200)

split at 170
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What is splitting: Associativity

[A, B) + [B, C) = [A, C)
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What is splitting: Rounding up

[A, B) = records starting in [A, B)

Random access

⇒ Can split without scanning data!



Google Cloud Platform 32

What is splitting: Rounding up

[A, B) = records starting in [A, B)

Random access

⇒ Can split without scanning data!
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What is splitting: Blocks

[A, B) = records in blocks starting in [A, B)
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What is splitting: Readers

foo.txt [100, 200)

foo.txt [100, 170) foo.txt [170, 200)

split at 170

“Reader”

Re-reading consistency:
continue until EOF = re-read shard
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Dynamic splitting: readers

read not yet read

not ok ok

e.g. can’t split an arbitrary SQL query

X = last record read:
Exact, Increasing



Confidential & ProprietaryGoogle Cloud Platform 36

[A, B) = blocks of records starting in [A, B)
[A, B) + [B, C) = [A, C)
Random access
⇒ No scanning needed to split

Reading repeatable, ordered by position, positions exact
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Concurrency when splitting

Read Process ...

time

should I split?         ?     ?           ?

While we wait, 1000s of workers idle.
Per-element processing
in O(hours) is common!
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Concurrency when splitting

Read Process ...

Read Process ...

     split! ok.

Split wait-free (but race-free), while processing/reading.
see code: RangeTracker

Per-element processing
in O(hours) is common!

     split!  ok.

should I split?         ?     ?           ?

While we wait, 1000s of workers idle.
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Perfectly granular splitting

“Few records, heavy processing” is common.

⇒ Perfect parallelism required
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Separation:
ParDo { record → sleep(∞) }  parallelized 

perfectly
(requires wait-free + perfectly granular)
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Separation is a qualitative improvement

/path/to/foo*.txt
ParDo: 
expand 

glob

foo5.txt

foo42.txt

foo8.txt

foo100.txt

foo91.txt

ParDo:
read 

records

perfectly parallel
over files

perfectly parallel
over records

infinite scalability
(no “shard per file”)

foo26.txt

foo87.txt

foo56.txt

See also: Splittable DoFn
http://s.apache.org/splittable-do-fn 

http://s.apache.org/splittable-do-fn
http://s.apache.org/splittable-do-fn
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“Practical” solutions improve performance

“No compromise” solutions reduce dimension
of the problem space
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Making predictions: easy, right?

100 130 200
~30% complete: 130 / [100, 200) = 0.3
Split at 70%: 0.7 [100, 200) = 170
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~50% complete: k / [a, z) ≈ 0.5
Split at 70%: 0.7 [a, z) ≈ t

t

70%
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100%

t

Progress
100%

t

Progress

100%

t

Progress
100%
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Progress
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Easy; usually too good to be true.
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Accurate predictions = wrong goal, infeasible.
Wildly off ⇒ System should still work
Optimize for emergent behavior (separation)
Better goal: detect stuckness
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Heavy work that you 
don’t know exists, until 
you hit it.

Goal: discover and 
distribute dark matter as 
quickly as possible.

(Image credit: NASA)

Dark matter

47



04 Autoscaling
Why dynamic rebalancing really matters
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How much work will there be?
Can’t predict: data size, complexity, etc.

What should you do?
Adaptive > Predictive.
Keep re-estimating total work; scale up/down

(Image credit: Wikipedia)

A lot of work ⇒ A lot of workers

49
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Start off with 3 workers,
things are looking okay

10m

3 days

Re-estimation ⇒ orders of 
magnitude more work:
need 100 workers!

92 workers idle

100 workers useless
without 100 pieces of work!
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Now scaling up is no big deal!
Add workers
Work distributes itself

Job smoothly scales 3 → 1000 workers.

Autoscaling + dynamic rebalancing

Waves of 
splitting

Upscaling &
VM startup



05 If you remember two things
Philosophy of everything above
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Reducing dimension > Incremental improvement

“Corner cases” are clues that you’re still compromising

If you remember two things

Adaptive > Predictive

“No compromise” solutions matter

Fighting stragglers > Preventing stragglers

Emergent behavior > Local precision

wait-free

perfectly granular
separation

heavy records

reading-as-ParDo

rebalancing autoscaling reusability
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Thank you
Q&A
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Apache Beam

No shard left behind: Dynamic work rebalancing in Cloud Dataflow

Comparing Cloud Dataflow Autoscaling to Spark and Hadoop

Splittable DoFn

Documentation on Dataflow/Beam source APIs
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