No Shard Left Behind

Straggler-free data processing in Cloud Dataflow

Eugene Kirpichov Senior Software Engineer

O Google Cloud Platform

Time

Plan

01 Intro

Setting the stage

02 Stragglers

Where they come from and how people fight them

03 Dynamic rebalancing

1 How it works 2 Why is it hard

04 Autoscaling

Why dynamic rebalancing really matters

05 **If you remember two things** Philosophy of everything above

01 Intro

Setting the stage

Google's data processing timeline

WordCount

```
Pipeline p = Pipeline.create(options);
p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))
 .apply(FlatMapElements.via(
     word \rightarrow Arrays.asList(word.split("[^a-zA-Z']+"))))
 .apply(Filter.byPredicate(word \rightarrow !word.isEmpty()))
 .apply(Count.perElement())
 .apply(MapElements.via(
     count \rightarrow count.getKey() + ": " + count.getValue())
 .apply(TextIO.Write.to("gs://.../..."));
p.run();
```


MapReduce = ParDo + GroupByKey + ParDo

Running a ParDo

Gantt charts

Large WordCount: Read files, GroupByKey, Write files.

400 workers

02 Stragglers

Where they come from, and how people fight them

Stragglers

13

Amdahl's law: it gets worse at scale

Higher scale \Rightarrow More bottlenecked by serial parts.

Where do stragglers come from?

Uneven partitioning

Uneven complexity

Process dictionary in parallel by first letter:

% words start with 't' \Rightarrow < 6x speedup

Join Foos / Bars, in parallel by Foos.

Some Foos have \gg Bars than others.

Uneven resources

Bad machines

Bad network

Resource contention

Noise

Spuriously slow external RPCs

Bugs

What would you do?

These kinda work. But not really.

Manual tuning = Sisyphean task

Time-consuming, uninformed, obsoleted by data drift ⇒ Almost always tuned wrong

Statistics often missing / wrong

Doesn't exist for intermediate data

Size != complexity

Backups/restarts only address slow workers

Upfront heuristics don't work: will predict wrong. Higher scale \rightarrow more likely.

Google Cloud Platform

High scale triggers worst-case behavior.

Corollary: If you're bottlenecked by worst-case behavior, you won't scale.

Google Cloud Platform

03.1 Dynamic rebalancing

How it works

Detect and fight stragglers

Workers

Time

What is a straggler, really?

Split stragglers, return residuals into pool of work

Rinse, repeat ("liquid sharding")

1 ParDo Skewed 24 workers

ParDo/GBK/ParDo THE PARTY PLANTER PLANT **25%**

Uniform

400 workers

Adaptive > Predictive

Get out of trouble > avoid trouble

Google Cloud Platform

 \odot

03.2 Dynamic rebalancing

Why is it hard?

And that's it? What's so hard?

Semantics	Quality	Making predictions	Being sure it works
What can be split?	Wait-free	Non-uniform density	Testing consistency
Data consistency	Perfect granularity	Stuckness	Debugging
Not just files		"Dark matter"	Measuring quality
APIs			

What is splitting

What is splitting: Associativity

[A, B) + [B, C) = [A, C)

What is splitting: Rounding up

[A, B) = records **starting** in [A, B)

Random access

 \Rightarrow Can split without scanning data!

What is splitting: Rounding up

[A, B) = records **starting** in [A, B)

Random access

 \Rightarrow Can split without scanning data!

What is splitting: Blocks

[A, B) = records **in blocks starting** in [A, B)

What is splitting: Readers

Dynamic splitting: readers

e.g. can't split an arbitrary SQL query

[A, B) = blocks of records starting in [A, B) [A, B) + [B, C) = [A, C) Random access ⇒ No scanning needed to split Reading repeatable, ordered by position, positions exact

Concurrency when splitting

While we wait, 1000s of workers idle.

Per-element processing in O(hours) is common!

Concurrency when splitting

While we wait, 1000s of workers idle.

Per-element processing in O(hours) is common!

Split wait-free (but race-free), while processing/reading.

see code: RangeTracker

Google Cloud Platform

Perfectly granular splitting

"Few records, heavy processing" is common.

⇒ Perfect parallelism required

Separation: ParDo { record → sleep(∞) } parallelized perfectly

Google Cloud Platform

(requires wait-free + perfectly granular)

Separation is a qualitative improvement

(no "shard per file")

"Practical" solutions improve performance "No compromise" solutions reduce dimension of the problem space

Making predictions: easy, right?

Easy; usually too good to be true.

Accurate predictions = wrong goal, infeasible. Wildly off ⇒ System should still work Optimize for emergent behavior (separation) Better goal: detect stuckness

Google Cloud Platform

Dark matter

Heavy work that you don't know exists, until you hit it.

Goal: discover and distribute dark matter as quickly as possible.

04 Autoscaling

Why dynamic rebalancing really matters

A lot of work \Rightarrow A lot of workers

How much work will there be?

Can't predict: data size, complexity, etc.

What should you do?

Adaptive > Predictive.

Keep re-estimating total work; scale up/down

(Image credit: Wikipedia)

Autoscaling + dynamic rebalancing

Now scaling up is no big deal!

Add workers Work distributes itself

Job smoothly scales $3 \rightarrow 1000$ workers.

05 If you remember two things

Philosophy of everything above

If you remember two things

Adaptive > Predictive

Fighting stragglers > Preventing stragglers

Emergent behavior > Local precision

"No compromise" solutions matter

Reducing dimension > Incremental improvement

"Corner cases" are clues that you're still compromising

Thank you Q&A

Apache Beam

No shard left behind: Dynamic work rebalancing in Cloud Dataflow

Comparing Cloud Dataflow Autoscaling to Spark and Hadoop

Splittable DoFn

Documentation on Dataflow/Beam source APIs