From HFT to Laplace Demon

When timed data technology

curves the market

@abifet

@erichoresnyi

HFT in the hey days

High Frequency Trading

5ms=20m\$

Source: Tabb Group

Blackrock* Pimco CapGroup

*Blackrock is actually headquartered in NY, main AUM coming from ETF/ passive originally BGI in SF

AUM>\$1trn, source: Towers Watson

Rank	Manager	Market	Assets (US\$million)
1	BlackRock	US	\$4,651,896
2	Vanguard Group	US	\$3,148,496
3	State Street Global	US	\$2,448,112
4	Allianz Group	Germany	\$2,189,296
5	Fidelity Investments	US	\$1,974,077
6	J.P. Morgan Chase	US	\$1,748,849
7	Bank of New York Mellon	US	\$1,710,282
8	AXA Group	France	\$1,491,394
9	Capital Group	US	\$1,396,777
10	Deutsche Bank	Germany	\$1,262,884
11	Goldman Sachs Group	US	\$1,178,000
12	Prudential Financial	US	\$1,175,947
13	UBS	Switzerland	\$1,158,763
14	BNP Paribas	France	\$1,114,595
15	Legal & General Group	UK	\$1,077,425
16	Amundi	France	\$1,052,587

Fidelity StateStreet GS BONY JPM Prudential Vanguard

Approx 3xGDP in USA ie 155k\$/hab

Cambrian Explosion

АRCA СМЕ СВОЕ́^{ВОТ}

NASDAQ IEX BRUT INET NYMEX

BATS ICE

Reg.ATS'98-Reg.NMS'05

Latency Propagation Serialization Processing

HFT: Ultra Dark Fiber

Buy-Side view of HFT

It's not a ghost...

HFT: Straight Fiber

1,000 miles > 825 miles

14.5 ms > 11.5 ms

HFT: Microwaves

11.5 > 8.5ms N:1.33 > 1.0003 v = c/n

Choose your lane HFT <> Algo Trading

"Once you get into milliseconds it's almost not HFT any more"

Spacetime is relative

Market Events: [ct,x,y,z]

Speed curves spacetime HFT built a wormhole to win on [ct',x,y,z] events

$$\Delta t' = rac{\Delta t}{\sqrt{1-rac{v^2}{c^2}}}$$

$\forall [ct,x,y,z] \in \mathbf{R}_{n} \vdash \forall [ct',x',y',z']$

The Endgame 2/3 Graph View : Regression

Loss aka Cost Function = $J(\theta)$: distance points to line

The Endgame 3/3

Matrix view

Al not news to trading

PhD Mathematics, Berkeley - String Theory Chern-Simons Form

Al age:Gradient Descent

Follow the steepest slope, 100m+ features

 α : Learning Rate, ∇ J : Gradient

Al age:Back Propagation

Adapt weight to control error from previous layer's input, 150+ layers

Alage: GPU From Final Fantasy to Autonomous Car

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						CO AL
-CRESCENT TUMBIR	$rac{\partial y}{\partial \mathbf{X}} =$	$\begin{bmatrix} \frac{\partial y}{\partial x_{11}} \\ \frac{\partial y}{\partial x_{12}} \\ \vdots \\ \frac{\partial y}{\partial x_{1q}} \end{bmatrix}$	$egin{array}{c} rac{\partial y}{\partial x_{21}} \ rac{\partial y}{\partial x_{22}} \ dots \ rac{\partial y}{\partial x_{2q}} \end{array}$	•••• ••• •••	$egin{array}{c} rac{\partial y}{\partial x_{p1}} \ rac{\partial y}{\partial x_{p2}} \ dots \ rac{\partial y}{\partial x_{pq}} \end{array} \end{bmatrix}$		

"The implementation of streaming algorithms, typied by highly parallel computations with little reuse of input data, has been widely explored on GPUs." (Stanford, 2004)

Bullish Fitness Drill

Overfitting?

Bearish Fitness Drill

Overfitting?

Standard Approach Batch-based, finite training sets, static models

Dataset

Model

Data Stream Approach Infinite training sets, dynamic models

DDDDDD++++++MMMMMM

Approximation Algo

What is the largest number that we can store in 8 bits?

1 0 1 0 1 0 1 0

Programming S.L. Graham, R.L. Rivest Techniques Editors

Counting Large Numbers of Events in Small Registers

Robert Morris Bell Laboratories, Murray Hill, N.J.

It is possible to use a small counter to keep approximate counts of large numbers. The resulting expected error can be rather precisely controlled. An example is given in which 8-bit counters (bytes) are used to keep track of as many as 130,000 events with a relative error which is substantially independent of the number *n* of events. This relative error can be expected to be 24 percent or less 95 percent of the time (i.e. $\sigma = n/8$). The techniques could be used to advantage in multichannel counting hardware or software used for the monitoring of experiments or processes.

Approximation Algo What is the largest number that we can store in 8 bits?

MORRIS APPROXIMATE COUNTING ALGORITHM

- 1 Init counter $c \leftarrow 0$
- 2 for every event in the stream
- 3 **do** rand = random number between 0 and 1
- 4 **if** *rand* < *p*
- 5 then $c \leftarrow c+1$

Approximation Algorithm

101100011110101 0111010

Sliding Window

We can maintain simple statistics over sliding windows, using $O(\frac{1}{\epsilon} \log^2 N)$ space, where

- N is the length of the sliding window
- ϵ is the accuracy parameter
- M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. 2002

Analysis

Stream Setting moa

Process an example at a time Inspect it only once (at most)

-Use a limited amount of memory

Work in a limited amount of time

Be ready to predict at any point

Prequential Evaluation Sequence of examples > Error of a model

Command Line

java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask EvaluatePrequential

-1 DecisionStump //training DecisionStump classifier ...

- -s generators.WaveformGenerator //...on WaveformGenerator data
- -n 100000 //using the first 100 thousand examples for testing
- -i 100000000 //training on a total of 100 million examples
- -f 1000000 //testing every one million examples
- > daregult.cav

Resourceful

Classification

Regression

Concept Drift

😹 MOA Stream Clustering Visualization Frame	
Outering	
Setup Visualization	
Resure Screenabit X Dim 1 IP Net/s Ground truth Yousiliation Speed Processed: 205000 Stop Y Dem 2 M Mondustering Clustering Processed: 205000	
Evaluation	
Values Pot Measure Current Mean © F1 0,27 0,45 0,33 0,42 Zoom n.Y Split from Kernel 0 -> multifernels = 3 Zoo	om in X Zoom out X
O Presson 6.44 6.72 6.47 6.40 6.00 O Press 6.27 6.27 6.77 6.77 O 552 6.00 6.06 6.07 6.77 6.77 0.47 00000000000000000000000000000000000	
€ 50000 100000 200000 25	

Sentiment Analysis

Stock Price

Simple

learner.getVotesForInstance(instance) learner.trainOnInstance(instance)

Scalable http://samoa-project.net

An experiment

Public Stock Dataset

Name	Price	Time	+/-	Change
HOME DEPOT	71.18\$	9:47:05		2.95 %
AT&T	36.71 \$	9:47:00		4.88 %
ALCOA	8.61 \$	9:47:05		1.30 %
BOEING CO	78.91 \$	9:47:01	•	-7.17 %
HEWLETT PACKARD	22.42 \$	9:46:54	•	-4.20 %
CISCO SYSTEMS	21.52\$	9:47:05		5.50 %
TRAVELERS COMPANIES (THE)	88.50 \$	9:46:59		6.47 %
UNITEDHEALTH GROUP	56.06 \$	9:46:53	•	-0.56 %
BANK OF AMERICA	13.13 \$	9:47:05		9.43 %
V	VINT	ON	ka	iggle

MOA Regression

Error

Stock Price

Regression

Instances

Fast vs Smart

Data Stream a compromise

HFT Data Stream Al

Apache & Wikipedia Foundation : please donate! MOA, Kaggle & Giphy : please contribute!

Books & Lectures

Data Stream Mining, MOA team

Yann LeCun Deep Learning Class, NYU

Matt Mazure, Emergent Mind & Andrew Ng, Coursera on Al

My Life as a Quant:Reflections on Physics&Finance, E.Derman

The Value of a Millisecond: Finding the Optimal Speed of a Trading Infra., TabbGroup

Flashboys, M.Lewis

Movies & Games

The Big Short, Back to the Future, Interstellar, The Black Hole,

Harry Potter, Rocky, Into the Mind, Star Wars, Matrix; Final Fantasy

