After Acceptance: Reasoning About System Outputs
Dr. Stefanos Zachariadis
@thenewstef

nttps://moto.co.de

nttps://cyclema.ps
http://itv.com

https://moto.co.de/
https://cyclema.ps/
http://itv.com/

OUTLINE

e [ssues not typically caught by a Cl environment

e What we'd like to test after the acceptance testing
phase

e How we can achieve this systematically

WHY ARE WE HERE

1

R

L I.Il -
i Gt J L

London 2012 \

Lontlon 2012

actual photo of ATM in Uruguay taken Feb 2017

= ‘.:
!);
H &

Papelera de TouchScreen...
reciclaje

e

F

Internet
Explorer

G

Mot epad-+

ﬁ

Paseo por
Windows XP

OH LOOK, TOUCHSCREEN STILL ACTIVE

raer en Comprobar Wer

| Compra en linea
Tenga en cuenta que WinRAR es un
programa de prueba. Debera comprar | Coma comprarlo
| unalicenciatrag el penodo de prueba de || """
40 dias o desinstalarlo de su ordenador. Cerrar

Ayuda |

Soluciones

- e s R A 3]
| i ..‘_ ,ﬂ'la""‘.'-"-:.-'rl'.-" T !
v ra 7 i ¥
* o = ¥ |
- - 1 o W}
A il A b k| i
" " 4 a8 id ¥ ¥ ¥
P * ¥ -
|

THE WERT FATE OF ASFFHAM CATHEDEAL

enum AccountType {
PERSONAL, BUSINESS, PRIVATE
}

public class Account {
private final String name;
private final AccountType type;

public class Account {
@NotNull
private final String name;
private final AccountType type;

public boolean equals(Object obj) {
return name.equals(obj.name) &&
type.equals(obj.type);

Rupert Jones

Friday 14 October 2016 16.30 B5T

NatWest and Royal Bank of Scotland customers have reported having their debit
cards declined in shops and at ATMs after the banking group was hit by yet
another technical glitch.

The problems emerged at around 12.45pm on Friday, just as many people were
popping out to buy a sandwich or do some lunch-hour shopping. The problem
coincided with payday for many people, and customers voiced their frustrations
on the banks’ Twitter and Facebook pages.

public class Account {
private final String name;
private final AccountType type;
private final CurrencyCode currency;

ol

@Test

public void getsTheCorrectBalanceAfterADeposit() {
//given
Account account = new Account();

/ /when
account.deposit(200);

//then
assertEquals (200, account.getBalance());

software is complicated

class StarWarsMovies {
private boolean[] seen = new boolean[200];

}

een = null;

20200+ 1

1 606 938 044 258
990 275 541 962 092
341 162 602 522 202
993 782 792 835 301

376 +1

testing cannot be exhaustive

continuous delivery of stateful systems is hard

27200

Approval

User acceptance

Approval

Automated
acceptance tests

Build & unit

Feedback

Version control

Check in

Delivery team

Version 1 Version 2 Version 3

@Test

public void getsTheCorrectBalanceAfterADeposit() {
//given
Account account = new Account();

/ /when
account.deposit(200);

//then
assertEquals (200, account.getBalance());

Your current account balance is a result of:

Deposits and withdrawals

Charges and deposits by other actors
Data migrations

Exchange rates

Multiple system releases

over lots of time

WHY IT MAY BREAK

e system state

e over multiple releases

Approval

User acceptance

Approval

Automated
acceptance tests

Build & unit

Feedback

Version control

Check in

Delivery team

ANEW HOPE

WHAT TO TEST

Data validity

All data can be loaded

@Test
public void allAccountsAreReadable() {
final AccountDao accountDao = new AccountDao();
for (User user : users) {
final Account account

= accountDao.loadAccountFor (user);
verify(account);

Business level validation

@Test
public void accountsBalanceAboveOverdraftLimit() {
for(User user : users) {

Account account =
accountDao.loadAccountFor (user);
assertTrue(account.getBalance()

> NEGATIVE OVERDRAFT LIMIT);

WHAT TO TEST

Data invariance

1. capture invariants

2. upgrade
3.777

4. verify invariants (& profit)

@Test
public void accountBalancelIsMaintained() {
for (User user : users) {
Account account =
accountDao.loadAccountFor (user);

BigDecimal productionBalance =
prodData.getBalance(account.getId());

assertEqual (productionBalance,
account.getBalance());

WHAT TO TEST

Migration integrity

@Test
public void allAccountsAreInUSD() {
for(User user : users) {
Account account =
accountDao.loadAccountFor (user);
assertEqual (CurrencyCode.USD,
account.getCurrency())

WHAT TO TEST

Data volume

{

°
4

@Test
public void generatesARiskReport ()
new AccountDao()

final AccountDao accountDao
final RiskReportGenerator riskReportGenerator

new RiskReportGenerator (accountDao);
60, TimeUnit.MINUTES)

time(riskReportGenerator: :make,

DATA SANITISATION

first name last name account id

John Smith 7

N2

first name last name account id

Name 3 Surname2 7

Cleanser Service

Datastore

Snapshot

Cleanse

Archive

Restore

Push

data migration

Production data > latest commit ?

Data is owned by the application. This means that the
migration process is owned by the application, and
new migrations should ship with the application and be
performed with the deployment of every new version.

latestData = migration(prodData)

1. import the sanitised data that the cleanser
produced

2. capture invariants (e.g. account balances)

3. migrate it to the latest version of the application

4. run the tests

Performance

y

Acceptance » Staging | Production

Integration

) Reliability

CONSIDERATIONS

e fight the power
e no downtime
e flipitaround - send the tests to production

e frequency

MORE THAN JUST TESTING

e staging

e passwords

OH IT CAN BE SO SLOW

e Sampling
e Incremental updates

e Rolling back

CONCLUSIONS

data testing: integration testing of commit with prod
- like data

bring production - like data into your CD pipeline

use a cleanser to make this legal

migration is integral to the application
allows you to catch a whole new category of bugs

facilitates frequent releases

Thank you!
https://moto.co.de
https://cyclema.ps

http://itv.com

pictures by @thenewstef apart from CD (wikipedia),
Data, Jar Jar, bank of chthulhu (unattributed)

https://moto.co.de/
https://cyclema.ps/
http://itv.com/

