
A�er Acceptance: Reasoning About System Outputs

Dr. Stefanos Zachariadis

@thenewstef

https://moto.co.de

https://cyclema.ps

http://itv.com

https://moto.co.de/
https://cyclema.ps/
http://itv.com/

OUTLINE

Issues not typically caught by a CI environment

What we'd like to test a�er the acceptance testing
phase

How we can achieve this systematically

WHY ARE WE HERE

actual photo of ATM in Uruguay taken Feb 2017

OH LOOK, TOUCHSCREEN STILL ACTIVE

enum AccountType {
 PERSONAL, BUSINESS, PRIVATE
}

public class Account {
 private final String name;
 private final AccountType type;
}

enum AccountType {
 PERSONAL, BUSINESS
}

public class Account {
 @NotNull
 private final String name;
 private final AccountType type;

 public boolean equals(Object obj) {
 return name.equals(obj.name) &&
 type.equals(obj.type);
 }

}

public class Account {
 private final String name;
 private final AccountType type;
 private final CurrencyCode currency;
}

@Test
public void getsTheCorrectBalanceAfterADeposit() {
 //given
 Account account = new Account();

 //when
 account.deposit(200);

 //then
 assertEquals(200, account.getBalance());
}

so�ware is complicated

class StarWarsMovies {
 private boolean[] seen = new boolean[200];
}

2^200 + 1
seen = null;

1 606 938 044 258
990 275 541 962 092
341 162 602 522 202
993 782 792 835 301

376 + 1

testing cannot be exhaustive

continuous delivery of stateful systems is hard

2^200

Check in

Check in

Check in

Trigger

Trigger

Trigger

Trigger

Trigger

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback

Approval
Approval

Delivery team Version control Build & unit
tests

Automated
acceptance tests

User acceptance
tests

Release

@Test
public void getsTheCorrectBalanceAfterADeposit() {
 //given
 Account account = new Account();

 //when
 account.deposit(200);

 //then
 assertEquals(200, account.getBalance());
}

Your current account balance is a result of:

Deposits and withdrawals
Charges and deposits by other actors
Data migrations
Exchange rates
Multiple system releases

over lots of time

WHY IT MAY BREAK
system state

over multiple releases

Check in

Check in

Check in

Trigger

Trigger

Trigger

Trigger

Trigger

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback

Approval
Approval

Delivery team Version control Build & unit
tests

Automated
acceptance tests

User acceptance
tests

Release

A NEW HOPE

WHAT TO TEST
Data validity

All data can be loaded
@Test
public void allAccountsAreReadable() {
 final AccountDao accountDao = new AccountDao();
 for(User user : users) {
 final Account account
 = accountDao.loadAccountFor(user);
 verify(account);
 }
}

Business level validation
@Test
public void accountsBalanceAboveOverdraftLimit() {
 for(User user : users) {
 Account account =
 accountDao.loadAccountFor(user);
 assertTrue(account.getBalance()
 > NEGATIVE_OVERDRAFT_LIMIT);
 }
}

WHAT TO TEST
Data invariance

1. capture invariants
2. upgrade
3. ???
4. verify invariants (& profit)

@Test
public void accountBalanceIsMaintained() {
 for(User user : users) {
 Account account =
 accountDao.loadAccountFor(user);

 BigDecimal productionBalance =
 prodData.getBalance(account.getId());

 assertEqual(productionBalance,
 account.getBalance());
 }
}

WHAT TO TEST
Migration integrity

@Test
public void allAccountsAreInUSD() {
 for(User user : users) {
 Account account =
 accountDao.loadAccountFor(user);
 assertEqual(CurrencyCode.USD,
 account.getCurrency())
 }
}

WHAT TO TEST
Data volume

@Test
public void generatesARiskReport() {
 final AccountDao accountDao = new AccountDao();
 final RiskReportGenerator riskReportGenerator =
 new RiskReportGenerator(accountDao);
 time(riskReportGenerator::make, 60, TimeUnit.MINUTES)
}

DATA SANITISATION
first_name last_name account_id
John Smith 7

↓

first_name last_name account_id
Name 3 Surname 2 7

data migration

Production data → latest commit ?

Data is owned by the application. This means that the
migration process is owned by the application, and

new migrations should ship with the application and be
performed with the deployment of every new version.

latestData = migration(prodData)

1. import the sanitised data that the cleanser
produced

2. capture invariants (e.g. account balances)
3. migrate it to the latest version of the application
4. run the tests

CONSIDERATIONS
fight the power

no downtime

flip it around - send the tests to production

frequency

MORE THAN JUST TESTING
staging

passwords

OH IT CAN BE SO SLOW
Sampling

Incremental updates

Rolling back

CONCLUSIONS
data testing: integration testing of commit with prod
- like data

bring production - like data into your CD pipeline

use a cleanser to make this legal

migration is integral to the application

allows you to catch a whole new category of bugs

facilitates frequent releases

Thank you!

pictures by @thenewstef apart from CD (wikipedia),
Data, Jar Jar, bank of chthulhu (unattributed)

https://moto.co.de

https://cyclema.ps

http://itv.com

https://moto.co.de/
https://cyclema.ps/
http://itv.com/

