

No SQL?

Image credit: http://browsertoolkit.com/fault-tolerance.png

No SQL?

Image credit: http://browsertoolkit.com/fault-tolerance.png

No SQL?

Image credit: http://browsertoolkit.com/fault-tolerance.png

Neo4j
the benefits of

graph databases +
a NOSQL overview

QCon London 2010

Emil Eifrem
CEO, Neo Technology

#neo4j
@emileifrem
emil@neotechnology.com

What's the plan?

Why now? – Four trends

NOSQL overview

Graph databases && Neo4j

A production example of Neo4j

Conclusions

Trend 1:
data set size

Source: IDC 20072007
40

2007
40

2010

988

Source: IDC 2007

Trend 1:
data set size

Trend 2: connectedness

Text
documents

1990

In
fo

rm
a
ti

o
n

 c
o
n

n
e
ct

iv
it

y

Folksonomies
Tagging

User-
generated

content

Wikis

RSS

Blogs

Hypertext

2000 2010 2020
web 1.0 web 2.0 “web 3.0”

Ontologies

RDF

Giant
Global
Graph
(GGG)

Trend 3: semi-structure
Individualization of content!

In the salary lists of the 1970s, all elements had
exactly one job

In the salary lists of the 2000s, we need 5 job
columns! Or 8? Or 15?

Trend accelerated by the decentralization of
content generation that is the hallmark of the age
of participation (“web 2.0”)

Data complexity

P
e
rf

o
rm

a
n

ce

Relational database

Majority of
Webapps

Social network

Semantic
Trading

Salary List

}custom

Aside: RDBMS performance

Trend 4: architecture

1990s: Database as integration hub

Trend 4: architecture

2000s: (Slowly towards...)

Decoupled services with own backend

Why NOSQL 2009?

Trend 1: Size.

Trend 2: Connectivity.

Trend 3: Semi-structure.

Trend 4: Architecture.

NOSQL

overview

First off: the name

NoSQL is NOT “Never SQL”

NoSQL is NOT “No To SQL”

NOSQL

Not Only SQL!

is simply

Four (emerging) NOSQL categories
Key-value stores

Based on Amazon's Dynamo paper

Data model: (global) collection of K-V pairs

Example: Dynomite, Voldemort, Tokyo*

BigTable clones

Based on Google's BigTable paper

Data model: big table, column families

Example: HBase, Hypertable, Cassandra

Four (emerging) NOSQL categories
Document databases

Inspired by Lotus Notes

Data model: collections of K-V collections

Example: CouchDB, MongoDB

Graph databases

Inspired by Euler & graph theory

Data model: nodes, rels, K-V on both

Example: AllegroGraph, Sones, Neo4j

NOSQL data models

Bigtable clones

Key-value stores

Document
databases

Graph databases

Data complexity

D
a
ta

 s
iz

e

NOSQL data models

Data complexity

D
a
ta

 s
iz

e

Bigtable clones

Key-value stores

Document
databases

90%
of

use
cases

(This is still billions of
nodes & relationships)

Graph databases

Graph DBs

& Neo4j intro

The Graph DB model: representation
Core abstractions:

Nodes

Relationships between nodes

Properties on both

name = “Emil”
age = 29
sex = “yes”

type = KNOWS
time = 4 years

type = car
vendor = “SAAB”
model = “95 Aero”

11 22

33

Example: The Matrix

name = “Thomas Anderson”
age = 29

11

name = “The Architect”

4242

CODED_BY

disclosure = public

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

33

1313

KNOWS KNOWS

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

age = 3 days

name = “Trinity”

77

22

KNOWS

KNOWS

K
N

O
W

S

Code (1): Building a node space
GraphDatabaseService graphDb = ... // Get factory

// Create Thomas 'Neo' Anderson
Node mrAnderson = graphDb.createNode();
mrAnderson.setProperty("name", "Thomas Anderson");
mrAnderson.setProperty("age", 29);

// Create Morpheus
Node morpheus = graphDb.createNode();
morpheus.setProperty("name", "Morpheus");
morpheus.setProperty("rank", "Captain");
morpheus.setProperty("occupation", "Total bad ass");

// Create a relationship representing that they know each other
mrAnderson.createRelationshipTo(morpheus, RelTypes.KNOWS);
// ...create Trinity, Cypher, Agent Smith, Architect similarly

Code (1): Building a node space
GraphDatabaseService graphDb = ... // Get factory
Transaction tx = neo.beginTx();

// Create Thomas 'Neo' Anderson
Node mrAnderson = graphDb.createNode();
mrAnderson.setProperty("name", "Thomas Anderson");
mrAnderson.setProperty("age", 29);

// Create Morpheus
Node morpheus = graphDb.createNode();
morpheus.setProperty("name", "Morpheus");
morpheus.setProperty("rank", "Captain");
morpheus.setProperty("occupation", "Total bad ass");

// Create a relationship representing that they know each other
mrAnderson.createRelationshipTo(morpheus, RelTypes.KNOWS);
// ...create Trinity, Cypher, Agent Smith, Architect similarly

tx.commit();

Code (1b): Defining RelationshipTypes
// In package org.neo4j.graphdb
public interface RelationshipType
{
 String name();
}

// In package org.yourdomain.yourapp
// Example on how to roll dynamic RelationshipTypes
class MyDynamicRelType implements RelationshipType
{
 private final String name;
 MyDynamicRelType(String name){ this.name = name; }
 public String name() { return this.name; }
}

// Example on how to kick it, static-RelationshipType-like
enum MyStaticRelTypes implements RelationshipType
{
 KNOWS,
 WORKS_FOR,
}

Whiteboard friendly

Björn Big Car

DayCare

Björn

owns

drivesbuild

The Graph DB model: traversal
Traverser framework for
high-performance traversing
across the node space

name = “Emil”
age = 31
sex = “yes”

type = KNOWS
time = 4 years

type = car
vendor = “SAAB”
model = “95 Aero”

11 22

33

Example: Mr Anderson’s friends

name = “Thomas Anderson”
age = 29

11

name = “The Architect”

4242

CODED_BY

disclosure = public

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

33

1313

KNOWS KNOWS

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

age = 3 days

name = “Trinity”

77

22

KNOWS

KNOWS

K
N

O
W

S

Code (2): Traversing a node space

// Instantiate a traverser that returns Mr Anderson's friends
Traverser friendsTraverser = mrAnderson.traverse(

Traverser.Order.BREADTH_FIRST,
StopEvaluator.END_OF_GRAPH,
ReturnableEvaluator.ALL_BUT_START_NODE,
RelTypes.KNOWS,
Direction.OUTGOING);

// Traverse the node space and print out the result
System.out.println("Mr Anderson's friends:");
for (Node friend : friendsTraverser)
{

System.out.printf("At depth %d => %s%n",
friendsTraverser.currentPosition().getDepth(),
friend.getProperty("name"));

}

$ bin/start-neo-example
Mr Anderson's friends:

At depth 1 => Morpheus
At depth 1 => Trinity
At depth 2 => Cypher
At depth 3 => Agent Smith
$

friendsTraverser = mrAnderson.traverse(
 Traverser.Order.BREADTH_FIRST,
 StopEvaluator.END_OF_GRAPH,
 ReturnableEvaluator.ALL_BUT_START_NODE,
 RelTypes.KNOWS,
 Direction.OUTGOING);

name = “Thomas Anderson”
age = 29

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

name = “The Architect”

disclosure = public

age = 3 days

name = “Trinity”

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

77

22

33

1313

4242

11
KNOWS KNOWS CODED_BYKNOWS

KNOWS
K

N
O

W
S

Example: Friends in love?

name = “Thomas Anderson”
age = 29

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

name = “The Architect”

disclosure = public

name = “Trinity”

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

77

22

33

1313

4242

11
KNOWS KNOWS CODED_BYKNOWS

KNOWS

K
N

O
W

S

LOVES

Code (3a): Custom traverser

// Create a traverser that returns all “friends in love”
Traverser loveTraverser = mrAnderson.traverse(

Traverser.Order.BREADTH_FIRST,
StopEvaluator.END_OF_GRAPH,
new ReturnableEvaluator()
{

public boolean isReturnableNode(TraversalPosition pos)
{

return pos.currentNode().hasRelationship(
 RelTypes.LOVES, Direction.OUTGOING);

}
},
RelTypes.KNOWS,
Direction.OUTGOING);

Code (3a): Custom traverser

// Traverse the node space and print out the result
System.out.println("Who’s a lover?");
for (Node person : loveTraverser)
{

System.out.printf("At depth %d => %s%n",
loveTraverser.currentPosition().getDepth(),
person.getProperty("name"));

}

new ReturnableEvaluator()
{
 public boolean isReturnableNode(
 TraversalPosition pos)
 {
 return pos.currentNode().
 hasRelationship(RelTypes.LOVES,
 Direction.OUTGOING);
 }
},

$ bin/start-neo-example
Who’s a lover?

At depth 1 => Trinity
$

name = “Thomas Anderson”
age = 29

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

name = “The Architect”

disclosure = public

name = “Trinity”

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

77

22

33

1313

4242

11
KNOWS KNOWS CODED_BYKNOWS

KNOWS
K

N
O

W
S

LOVES

Bonus code: domain model
How do you implement your domain model?

Use the delegator pattern, i.e. every domain entity
wraps a Neo4j primitive:

// In package org.yourdomain.yourapp
class PersonImpl implements Person
{
 private final Node underlyingNode;
 PersonImpl(Node node){ this.underlyingNode = node; }

 public String getName()
 {
 return (String) this.underlyingNode.getProperty("name");
 }
 public void setName(String name)
 {
 this.underlyingNode.setProperty("name", name);
 }
}

Domain layer frameworks
Qi4j (www.qi4j.org)

Framework for doing DDD in pure Java5

Defines Entities / Associations / Properties

Sound familiar? Nodes / Rel’s / Properties!

Neo4j is an “EntityStore” backend

Jo4neo (http://code.google.com/p/jo4neo)

Annotation driven

Weaves Neo4j-backed persistence into domain
objects at runtime

Neo4j system characteristics
Disk-based

Native graph storage engine with custom binary
on-disk format

Transactional

JTA/JTS, XA, 2PC, Tx recovery, deadlock
detection, MVCC, etc

Scales up

Many billions of nodes/rels/props on single JVM

Robust

6+ years in 24/7 production

Social network pathExists()

~1k persons

Avg 50 friends per
person

pathExists(a, b) limit
depth 4

Two backends

Eliminate disk IO so
warm up caches

11 33

7777
3636

55

1212

77

4141

Social network pathExists()

11

Mike 33

Marcus

22
Emil

77
John

44
Leigh

55
Kevin

99
Bruce

persons query time
Relational database 1 000 2 000 ms
Graph database (Neo4j) 1 000 2 ms
Graph database (Neo4j) 1 000 000 2 ms

Pros & Cons compared to RDBMS
+ No O/R impedance mismatch (whiteboard friendly)

+ Can easily evolve schemas

+ Can represent semi-structured info

+ Can represent graphs/networks (with performance)

- Lacks in tool and framework support

- Few other implementations => potential lock in

- No support for ad-hoc queries+

Query languages
SPARQL – “SQL for linked data”

Ex: ”SELECT ?person WHERE {
 ?person neo4j:KNOWS ?friend .
 ?friend neo4j:KNOWS ?foe .
 ?foe neo4j:name “Larry Ellison” .
 }”

Gremlin – “perl for graphs”

Ex: ”./outE[@label='KNOWS']/inV[@age > 30]/@name”

The Neo4j ecosystem
Neo4j is an embedded database

Tiny teeny lil jar file

Component ecosystem

index

meta-model

graph-matching

remote-graphdb

sparql-engine

...

See http://components.neo4j.org

Neo4j-RDF triple/quad store

Example: Neo4j-RDF

Neo4j

RDF
Metamodel Graph

match

SPARQLOWL

Language bindings
Neo4j.py – bindings for Jython and CPython

http://components.neo4j.org/neo4j.py

Neo4jrb – bindings for JRuby (incl RESTful API)

http://wiki.neo4j.org/content/Ruby

Neo4jrb-simple

http://github.com/mdeiters/neo4jr-simple

Clojure

http://wiki.neo4j.org/content/Clojure

Scala (incl RESTful API)

http://wiki.neo4j.org/content/Scala

Grails Neoclipse screendump

Scale out – replication
Rolling out Neo4j HA... soon :)

Master-slave replication, 1st configuration

MySQL style... ish

Except all instances can write, synchronously
between writing slave & master (strong consistency)

Updates are asynchronously propagated to the
other slaves (eventual consistency)

This can handle billions of entities...

… but not 100B

Scale out – partitioning
Sharding possible today

… but you have to do manual work

… just as with MySQL

Great option: shard on top of resilient, scalable
OSS app server , see: www.codecauldron.org

Transparent partitioning? Neo4j 2.0

100B? Easy to say. Sliiiiightly harder to do.

Fundamentals: BASE & eventual consistency

Generic clustering algorithm as base case, but
give lots of knobs for developers

Production

example

Case: Enterprise Content Management
Background:

Enterprise Content Management (think: “CMS
but also with non-web content,” or “big
filesystem on the webotubes”)

Thousands of users

Various content types: PDFs, images, videos, doc
files, organization-specific XML formats

“Multi-tentant SaaS”

Outline
A saga in three parts

Part I: we're a file system on the web

Part II: sharing is caring

Part III: profit

Part I: We're a file system on the web
Let's get something out there

We shall store files in folders

Ya know, versions are kinda cool

Part I: concept model

Root

File 2

File 1
Sub

Folder

v. 2

v. 1

Part I: SQL? NOSQL?
So hmm, this whole relational database thingie...

Modeling hierarchies?

Doable but kinda painful.

Sucky code. And hmm, quite a lot of joins.

Activity feeds

Wouldn't it be cool if you could subscribe to a
folder and get changes fed to you.

Whoa, massive amount of joins!

Denormalization, write explosion, code complexity.

Part I: concept model

Root

File 2

File 1
Sub

Folder

v. 2

v. 1

How do you represent this in a
graph database?

Tadaa!

Root

File 2

File 1
Sub

Folder

v. 2

v. 1

How do you implement activity
feeds?

Easier when you do ~1M
traversals per second. :)

No need to denormalize and
aggregate events at each
folder level.

Part II: Sharing is caring
We're oh-so SaaS and multi-tentant

Would be useful if we could share content between
organizations

Since we're all kinda running on top of the same
system (not just same software) anyway

Trifork
Root

File 2
Share

Sub
link

File 1
Sub

Folder

File 2

File 1

v. 2

v. 1

InfoQ
Root

Part II: concept model (a)

Part II: Security
Whoa, guys, security?

Customer sez: we need to model organizations

And suborganizations

And hierarchical user groups

Customer sez: and add some security to all that

So add ACLs

And incremental security

Trifork
Root

File 2
Share

Sub
link

File 1
Sub

Folder

File 2

File 1

U2 U1

v. 2

v. 1

+R

+W

-W

Trifork
Org

InfoQ
Root

U3

+RW

Admin
Group

Part II: Keyword translations
Customer sez: we need to cut costs

Ouch

But we spend a lot of time on manually translating
keyword lists and things like that

Let's model that in the graph!

Also, this whole graph thing is really kinda flexible...
so let's throw in some topologies while we're at it!

Trifork
Root

File 2
Share

Sub
link

File 1
Sub

Folder

File 2

File 1

Skog
 SV

Forest
 EN

U2 U1

v. 2

v. 1

Admin
Group

+R

+W

-W

Träd
 SV

Woods
 EN

Tree
 EN

Plant
 EN

Trifork
Org

InfoQ
Root

U3

+RW

Part III: profit
Customer sez:

I heart the cash

If my customers make money, I make money

Developers: “Gives me multi-tentant ecommerce!”

Owait, say waht?

Part III: multi-tentant e-commerce?
Conceptual breakdown:

Every org can “enable e-commerce,” thereby
making their content sellable

Within every org, one should be able to model a
supply chain of creator → syndicator → distributor
→ customer

The distributor assigned by region and sets price:

E.x. one dist for Scand, one for the UK

Due to inter-org sharing (remember?), the same
content can belong to several e-commerce
“spheres”

SI

Ecom
sph

Scand.

World

DR

Price
List

Syndicator
Role

Distributor
Role

Folder

Sub
File 1

U1

QCon
Org

Finding the price
So how do you actually figure out the price

Throw the distributor

Which is regionally bound

Per content

Per e-commerce sphere

That's a shortest path algo!

SI

Ecom
sph

SI

Scand.

World

DR

Price
List

Syndicator
Role

Distributor
Role

DR

Folder

Sub
File 1

U1

Price
List

QCon
Org

Distributor
Role

JAOO
Org

Finding the price:

Equivalent to finding the
shortest path from U1 to File1
along “purple and black”
relationship types.

Trifork
Root

File 2
Share

Sub
link

File 1
Sub

Folder

File 2

File 1

Skog
 SV

Forest
 EN

U2 U1

v. 2

v. 1

Admin
Group

+R

+W

-W

SI

Träd
 SV

Woods
 EN

Tree
 EN

Plant
 EN

Ecom
sph

SI

Scand.

World

DR

Price
List

Syndicator
Role

Distributor
Role

DR

Folder

Sub
File 1

Trifork
Org

U1

Price
List

QCon
Org

InfoQ
Root

U3

+RW
Distributor

Role

JAOO
Org

ECM conclusions
One example of an evolving model

Site had a lots of content, lots of users

High read load

Moderate write load

Only backend: Neo4j

“You go to a graph database for the performance...
but you stay for the flexibility!”

How ego are you? (aka other impls?)
Franz’ AllegroGraph (http://agraph.franz.com)

Proprietary, Lisp, RDF-oriented but real graphdb

Sones graphDB (http://sones.com)

Proprietary, .NET, cloud-only, req invite for test

Kloudshare (http://kloudshare.com)

Graph database in the cloud, still stealth mode

Google Pregel (http://bit.ly/dP9IP)

We are oh-so-secret

Some academic papers from ~10 years ago

G = {V, E} #FAIL

Conclusion
Graphs && Neo4j => teh awesome!

Available NOW under AGPLv3 / commercial license

AGPLv3: “if you’re open source, we’re open source”

If you have proprietary software? Must buy a
commercial license

But the first one is free!

Download

http://neo4j.org

Feedback

http://lists.neo4j.org

Questions?

Image credit: lost again! Sorry :(

http://neotechnology.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

