
Banking Case study: Scaling 
with low latency using 

NewSQL 
 Jags Ramnarayan (VMWare) 
Jim Bedenbaugh (VMWare) 

 
Qcon 2012 



Agenda 
Business Requirements 

Operational data 
Analysis 

Problem Statement 
Scaling pain 

Introduction to SQLfire   
Driving principles in SQLFire 
Use cases 
Demo (partitioned regions, colocation, etc) 
Data-aware procedures concepts 
Consistency model 
Shared-nothing disk persistence  



Business Requirements: What are they after? 

A large regional bank in the Northeastern U.S.  
Collects large amounts of operational data 

By region and branch 
Significant number of attributes associated with 
each transaction 

Drive thru or foot traffic 
Transaction type 
Product types 
Time of day 



Business Requirements: What are they after? (con’t) 

Analysis 
The data is analyzed to determine the staffing 
requirements for each branch and region. These 
requirements yield guidance on: 

Number of staff needed 
Skills needed  
Hours of operation 

 
 



	  	  

Confiden(al	  

“Right now our database is only 32G 
but...	  

“We are constantly acquiring new 
banks…	  

“And this database is growing rapidly…”	  

“And it takes at least a week to get new 
resources and this is just too slow.”	  

So what seems to be the problem? 



Vertical Scaling has led to The “Jenga Architecture” 

“We can only scale one way: Vertically. We want to scale 
horizontally but the vendor wants a pile of money to put 
in a new solution. When we need more resources, all we 
can do is jam in more memory and hang more drives off 
the same machine, but we’re getting at the end of that 
road. We need another solution.”     



How did they arrive in this predicament? 

Poor planning: “We just didn’t think about how this data is 
used or how much we would end up collecting over time.” 

Doing it on the cheap: “We were locked into one database 
vendor and the original implementation was cheap to do 

with their low end database.” 

Clustering: “Our team isn’t really all that sophisticated in 
doing these kinds of databases.  An awful lot of our data 

lives on the mainframe.” 



The	  introduc(on	  of	  SQLfire…	  



Replicated, partitioned tables in 
memory. Redundancy through 
memory copies. Data resides on 
disk when you explicitly say so 

Powerful SQL engine: 
standard SQL for select, DML 

DDL has SQLF extension 

Leverages GemFire data grid 
engine. 

 

And how does SQLfire ease my pain? 



Scaling at the speed of thought 

Consistency model is 
FIFO, Tunable. 

 Distributed transactions 
without global locks 

Applications 
access the 
distributed DB 
using JDBC, 
ADO.NET 



Asynchronous replication over WAN 

Synchronous replication within 
cluster 

Clients failover, failback 

Easily integrate with existing DBs  
- caching framework to read through, write through or write 
behind 

Scaling at the speed of thought 



"Data aware procedures“ -  standard Java stored 
procedures with "data aware" and parallelism 
extensions 

When nodes are added, data and behavior is 
rebalanced without blocking current clients 

Scaling at the speed of thought 



The Partitioning Strategy: How we chose… 

CREATE TABLE FLIGHTS 
   ( 
     FLIGHT_ID CHAR(6) NOT NULL , 
   REGION INTEGER NOT NULL, 

     SEGMENT_NUMBER INTEGER NOT NULL , 
     ORIG_AIRPORT CHAR(3), 
     DEPART_TIME TIME, … ) 

PARTITION BY COLUMN(REGION)  
REDUNDANCY 1 
PERSISTENT; 



Partitioning: The Result 
What it looked like:  

2x48G VM with 2 processors 
Data Partitioned and Replicated 
Split: 13 million rows/ 9 million rows 

What happened when we added another VM 
Added 48g 2 processor 
Data rebalanced across 3 partitions: 8 million/6 million/8 million 

How it performed 
We ran side by side comparisons of and existing SQL statement. 
The existing server took nearly 20 minutes to complete 
The SQLfire version completed in under 1 minute. 

The benefit of partitioning is that we can go to a single partition and retrieve data 
instead of a table scan. 

 



No	  

Hashing	  is	  performed	  on	  the	  Java	  
implementa(on	  of	  the	  column’s	  type.	  

Is	  par((oning	  
declared?	  

Use	  explicit	  direc(ves	  Yes	  

Are	  there	  foreign	  	  

keys?	  

Yes	   referenced	  table	  
par((oned	  on	  the	  foreign	  

key?	  

Is	  the	  	  

	   Colocate	  with	  
referenced	  table	  

Yes	  

No	  

Is	  there	  a	  primary	  	  

key?	  

No	  

Are	  there	  UNIQUE	  
columns?	  

Par((on	  by	  primary	  
key	  

Yes	  

Par((on	  by	  the	  first	  
UNIQUE	  column	  

Yes	  

Par((on	  by	  internally	  
generated	  row	  id	  No	  

If	  no	  PARTITION	  BY	  clause	  is	  specified,	  GemFire	  
SQLF	  will	  automaBcally	  parBBon	  and	  collocate	  

tables	  based	  on	  this	  algorithm.	  

Start	  



Reac(ons	  to	  the	  implementa(on	  

The DBA’s had the Grumpy Old Man response:  
 
 
 
 
 
 
 
 
 

“Hey you kids get off my grass!” 



Reac(ons	  to	  the	  implementa(on	  

Management response:  
 
 
 
 
 
 
 
 
 

“Where do we sign?” 



Reac(ons	  to	  the	  implementa(on	  

Business response:  
 
 
 
 
 
 
 
 
 

“Where do we sign?” 



Reac(ons	  to	  the	  implementa(on	  

Developers response:  
 
 
 
 
 
 
 
 
 

“What? We have to modify existing SQL? This just doesn’t drop in?” 



Conversion Gotchas and Tips… 
DDL. It’s different for Derby. DB2 has all kinds of options and 
parameters. Use a hatchet, not scissors when editing. I wrote a few 
scripts to rip out a lot of the DB2 DDL. It’s just not needed.   

Data types: Map them before you convert the DDL. Write a script to 
convert them.  

Data conversion: SQLfire has a neat import procedure 
SYSCS_UTIL.IMPORT_TABLE. Use it. I always requested CSV files and 
split them up into chunks in case anything went wrong. 

Use JDBCRowloader for read misses. Comes with SQLfire.  
Use DDLUtils for DDL conversion. 
Cannot use Stored Procedures. Rewrite as Java Stored Procedure 
 



	  SQLFire	  Driving	  Principles	  

Undifferentiated features in next gen databases - 
Horizontal scalability, high availability 

NoSQL data models less rigid but most now support some form 
of SQL – cql, un-ql, oql, etc

SQL : Flexible, easily understood, strong type system 
     essential for query engine efficiency

 

Focus on commodity servers; 
Memory density follows Moore’s law

Optimize for memory; Focus on large Not “Big data” 



	  SQLFire	  Driving	  Principles	  

Exploit data affinity for parallel processing; offer new APIs
- App developer is the new DBA

Data is flowing.. Work with relevant, “NOW” data 

Not Just High Availability.. Continuous availability
Synchronous copies in proximity.. Async copies across WAN 

Consistency should be tunable
 Eventual consistency is too difficult for the average developer

Write(A,2)  Read(A) may return 1 or (1,2)  



DESIGN	  PATTERNS	  

	  	  
	  



“Write	  thru”	  Distributed	  caching	  

Pre-load using DDLUtils 
for queries 

 
Lazily load using “RowLoader” for PK 

queries 
 

Configure LRU eviction or expiry for 
large data 

 
“Write thru” – participate in container 

transaction	  



Distributed	  caching	  with	  Async	  writes	  to	  DB	  

Buffer high write rate from DB 
 

Writes can be enqueued in memory 
redundantly on multiple nodes 

 
Or, also be persisted to disk on each 

node 
 

Batches can be conflated and written 
to DB 

 
Pattern for “high ingest” into Data 

Warehouse	  



As	  a	  scalable	  OLTP	  data	  store	  

 
Shared nothing persistence to disk 

Backup and recovery 
 

No Database to configure and be throttled by	  



As	  embedded,	  clustered	  Java	  database	  

Just deploy a JAR or WAR into clustered App 
nodes 

 
Just like H2 or Derby except data can be 
sync’d with DB is partitioned or replicated 

across the cluster 
	  

Low cost and easy to manage 



To	  process	  app	  behavior	  in	  parallel	  

 
Map-reduce but based on simpler RPC 



To	  make	  data	  visible	  across	  sites	  in	  real	  (me	  



Demo  
default partitioned tables, colocation, persistent tables 

FLIGHTS
---------------------------------------------

      FLIGHT_ID CHAR(6) NOT NULL ,
      SEGMENT_NUMBER INTEGER NOT NULL ,
      ORIG_AIRPORT CHAR(3),
      DEPART_TIME TIME,
…..

PRIMARY KEY (FLIGHT_ID,                        
SEGMENT_NUMBER)

FLIGHTAVAILABILITY
---------------------------------------------

 FLIGHT_ID CHAR(6) NOT NULL ,
  SEGMENT_NUMBER INTEGER NOT NULL ,
  FLIGHT_DATE DATE NOT NULL ,
  ECONOMY_SEATS_TAKEN INTEGER ,
…..

PRIMARY KEY ( FLIGHT_ID,
   SEGMENT_NUMBER,
   FLIGHT_DATE))

FOREIGN KEY (FLIGHT_ID,
            SEGMENT_NUMBER)
         REFERENCES FLIGHTS (
            FLIGHT_ID,
            SEGMENT_NUMBER)

FLIGHTHISTORY
---------------------------------------------

      FLIGHT_ID CHAR(6),
      SEGMENT_NUMBER INTEGER,
      ORIG_AIRPORT CHAR(3),
      DEPART_TIME TIME,
      DEST_AIRPORT CHAR(3),
…..

1 – M 

 1 – 1 

SEVERAL CODE/DIMENSION TABLES
---------------------------------------------

AIRLINES: AIRLINE INFORMATION (VERY STATIC)
COUNTRIES : LIST OF COUNTRIES SERVED BY FLIGHTS
CITIES: 
MAPS: PHOTOS OF REGIONS SERVED



Demo	  –	  Start	  with	  replicated	  tables	  
replicated	  tables	  



Demo	  –	  Par((on	  the	  “fact”	  tables	  



Demo	  –	  Add	  a	  new	  server	  and	  rebalance	  



Demo	  –	  HA	  



Say, Flights and FlightAvailability both were hash partitioned on PK 
 

Select * from Flights f, FlightAvailability fa 
where f.flight_id = fa.flight_id  

and f.flight_id ='xxx‘ and fa.seats_taken > yy; 

•  With Hash partitioning the join would have to execute everywhere 

•  Distributed joins are expensive and inhibit scaling 
–  joins across distributed nodes could involve distributed locks and 

potentially a lot of intermediate data transfer across nodes 

Linearly scaling joins 



Designer thinks about how data maps to partitions 
–  The main idea is to: 

1)  minimize excessive data distribution by keeping the 
most frequently accessed and joined data collocated on 
partitions 

2)  Collocate transaction working set on partitions so 
complex 2-phase commits/paxos commit is eliminated or 
minimized. 

Read Pat Helland’s “Life beyond Distributed Transactions” and the 
Google MegaStore paper 

Partition Aware DB Design 



1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  

Collocate	  Data	  For	  Fast	  Joins.	  
	  	  CREATE	  TABLE	  FlightAvailability	  

	  	  	  	  	  (flight_id	  ..,	  	  
	  	  	  	  	  segment	  ..,	  date	  ..)	  
PARTITION	  BY	  
	  	  	  	  	  COLUMN	  (flight_id)	  
	  	  	  	  	  COLOCATE	  WITH	  Flights;	  

SQLFire	  Node	  1	  

FltAvailability	  1	  

SQLFire	  Node	  2	  

FltAvailability	  2	  

Replica	  

Replica	  

Flight	  1	  

Flight	  2	  SQLFire	  can	  join	  
tables	  without	  
network	  hops.	  

C1	  

C2	  

Related	  data	  placed	  
on	  the	  same	  node.	  



	  	   SQLFire	  Node	  1	  

FltAvailability	  1	  

SQLFire	  Node	  2	  

FltAvailability	  2	  

Replica	  

Replica	  

Flight	  1	  

Flight	  2	  SQLFire	  can	  join	  
tables	  without	  
network	  hops.	  

C1	  

C2	  

Related	  data	  placed	  
on	  the	  same	  node.	  

Select * from 
Flights f, FlightAvailability fa 

where <equijoin  clause> 
and f.flight_id =‘UA765'; 

 

Collocate	  Data	  For	  Fast	  Joins.	  

Query	  
pruned

	  to	  nod
e	  1	  



	  	   SQLFire	  Node	  1	  

FltAvailability	  1	  

SQLFire	  Node	  2	  

FltAvailability	  2	  

Replica	  

Replica	  

Flight	  1	  

Flight	  2	  

In	  parallel,	  each	  node	  does	  hash	  join,	  aggrega[on	  locally	  

C1	  

C2	  

Related	  data	  placed	  
on	  the	  same	  node.	  

SELECT sum(fa.seats_taken), 
f.orig_airport, fa.date  

FROM flights f, FltAvailability fa 
WHERE <equijoin>  

GROUP By fa.date, f.orig_airport 
ORDER BY fa.date, f.orig_airport 

DESC 
 

Collocate	  Data	  For	  Fast	  Joins.	  

Parallel	  sca^er-‐gather	  



Partitioning and redundancy 
  

Redundancy = 2 
(but tunable)	  

Single owner 
for any row at point in 

time	  

Replication can be “rack 
aware”	  

Replication is 
synchronous but done in 

parallel 
	  



Data-Aware Stored Procs 
•  Procedure execution routed to the data 
•  Full scaled-out execution 
•  Highly available 
•  Use pure Java to access/store data 
•  Demo later on 

Like Map/Reduce But Different	  



1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  

Scaling	  Stored	  Procedures	  
	  	  CALL	  maxSales(arguments)	  

	  ON	  TABLE	  sales	  
WHERE	  (Loca(on	  in	  (‘CA’,’WA’,’OR')	  

WITH	  RESULT	  PROCESSOR	  
	  maxSalesReducer	  
	  	  

SQLFire	  uses	  data-‐	  
aware	  rou[ng	  to	  

route	  processing	  to	  
the	  data.	  

maxSales	  on	  
local	  data	  

maxSales	  on	  
local	  data	  

maxSalesReducer	  

Result	  Processors	  
give	  map/reduce	  
func[onality.	  



Scalability: Consistency 
With Transactions	   And Without	  

-  Row updates always  
atomic and isolated 

-  FIFO consistency 
 
	  

-  Distributed transactions 
with 1-phase commit 
-  Coordinator per node 
-  Eager locking + Fail 

fast 
	  

Assumes: 
Most x-actions small in space and time 

Write-write conflicts rare 



•  Parallel log structured 
storage 

•  Each partition writes in 
parallel 

•  Backups write to disk 
also 
–  Increase reliability 

against h/w loss 

Scalability: High performance persistence 

Memory
Tables

Append only 
Operation logs

OS Buffers

LOG 
Compressor

Record1

Record2

Record3

Record1

Record2

Record3

Memory
Tables

Append only 
Operation logs

OS Buffers

LOG 
Compressor

Record1

Record2

Record3

Record1

Record2

Record3



How does it scale for queries? 

N =	   2	   4	   6	   8	   10	  

200k	  

420k	  

604k	  

790k	  

1M	  
Partitioned Table 

PK queries per second 
(1kb Rows)	  

Number Of Servers	  

# Clients = 2*N 
200	  

400	  

600	  

800	  

1000	  



How does it scale for updates? 

N =	   2	   4	   6	   8	   10	  

220k	  

490k	  

750k	  

950k	  

1.3M	  
Partitioned Table 

Updates Per Second 
(3 columns)	  

Number Of Servers	  

85% < 1ms 
latency	   # Clients = 2*N 

200	  

400	  

600	  

800	  

1000	  



http://vmware.com/go/sqlfire 
Try SQLFire Today! 
Free for developer (3 nodes) perpetually.	  

Download:	  

Forum:	   http://vmware.com/vmtn/appplatform/vfabric_sqlfire 
Got questions? Get answers.	  

:sigh: 
Just Google it	  

Twitter:	   @vFabricSQLFire 

Q & A 


