

My 'number'

H6752

- Distributed Systems / HPC guy.
- Chief Scientist :- at Push Technology
- Alumnus of :-

Motorola, IONA, Betfair, JPMC, StreamBase.

- School: Trinity College Dublin.
 - BA (Mod). Comp. Sci.+
 - M.Sc. Networks & Distributed Systems
- Responds to: Guinness, Whisky

About me?

HA. Black swans & Pigfish!

When this ...

... inevitably happens

Over the Edge, where Fallacies roam

- -The network is reliable
- -Latency is zero
- -Bandwidth is infinite
- -There is one administrator
- -Topology does not change
- -The network is secure
- -Transport cost is zero
- -The network is homogeneous

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

& the last mile. Dragons there be.

Distributed Systems

"A distributed system is one in which the **failure** of a computer you didn't even know existed can render your computer unusable"

- Leslie Lamport

High Availability

"The price of **reliability** is the pursuit of the **utmost simplicity**."

- Sir Tony Hoare, Turing Award speech, 1980

"This is the unfortunate truth: Simplicity is Hard."

- Mosely & Marks, Out of the Tar Pit, 2006

High Experiences ~ Man vs Machine

Image: http://www.phillymarketinglabs.com/man-vs-machine/

Machines are 'Easy'

A more unfortunate truth is:

Humans* are Harder.

Allegedly Sergey* can be *Emasculated* by *Glass*. But, I bet he owns a god phone.

* Humans are grumpy!

* Colors chosen at random

Once Upon a time ...

There was a very useful little single point of failure.

Copyright Push Technology 2012

It was so successful

It grew and it grew! So we put it in the cloud.

It grew, and it grew ...

We touched it with all of our devices.

See SPOF run!

Copyright Push Technology 2012

See SPOF spew 🛞

Is there nothing we can do? Esse hic draconum, basically. But, yes we can too ...

Bad things happen ...

It's either dyno park this or whale fail in the zoo ...

So we spun up another instance

And master / slave dabbled with us

Copyright Push Technology 2012

Active/Passive – Maybe?

MTTR relatively high. MTBF relatively low. Ok for 'nice-to-have' or 'too-late-to-cry-now' facilities.

Active/Passive – Hmm?

MTTR slightly better. Can replicate **state** actively for cheaper recovery.

Copyright Push Technology 2012

Active/Active – Ugh...

MTTR negligeable. Use 2x the bandwidth. Get 'half' the value. Dups

Active/Active – Ugh...

MTTR negligeable. Minify bandwidth usage mostly. Dups

Active/Active – Ugh...

MTTR negligeable. Minify bandwidth usage mostly. Dups

Spin up another box?

Speak no evil

Hear no evil

See no evil

Failback, Failover, Takeover? Load Balance? This is getting costly!

Can implement N-Plex HA with a 'simple' FSM

Consider roles for Application, Controller, callbacks, ...

Spin up a cluster, ring?

A simple implementation can be easier to build than HA pairs. Your mileage may vary. Can be masterless too.

Where possible, use existing solutions such as Akka, riak_core, doozer, Apache Zookeeper.

You'll still need to roll your own data recovery - mostly. Although CRDT's are changing that in the database community.

One more thing ... Real-Time streams

Data!

Real-time data streams are long-lived, conversational, can be stateful.

Streaming Data Recovery

	Туре	E	Before				Afte	r	Comments
UBECM	Precise	T 1	Т 2	Т 3		Т 4	Т 5	Т 6	Completely masks failure.
	Gap	T 1	Т 2	Т 3		?	Т 5	Т 6	May result in data loss
	Repeating Rollback	Т 1	Т 2	Т З		Т 2	Т З	Т 4	IO preservation. P/S dups are equivalent.
	Convergent Rollback	Т 1	T 2	Т 3		X 2	X 3	X 4	IO preservation. P/S dups may differ initially but EC.
	Divergent Rollback	T 1	Т 2	Т 3		X 2	X 3	X 4	IO preservation. P/S dups will differ

http://nms.lcs.mit.edu/papers/ha-icde05.pdf - HA algos for DSPs

But, problem: The bird, basically.

Ugh, just one more thing ...

State?

Data rarely passes through a box without being fiddled with.

Streaming Operations – 4 types

Туре	Comments					
Arbitrary	Completely masks failure.					
Deterministic	Given Same Input, Same State, produce Same Output					
Convergent-capable	Given Same Input, Earlier Start, Empty State, converge to Same Output as Deterministic case					
Repeatable	Given Same Input, Earlier State, Empty State, requires at most one input to product at most one output to be convergent-capable and same as deterministic case					

http://nms.lcs.mit.edu/papers/ha-icde05.pdf - HA algos for DSPs

DOH?

Data Recovery Type x Operation Type = The Hard Part

Data On Demand

Copyright Push Technology 2012

Just one last one more thing ...

Human Expectations

We are fickle, grumpy, changeable, intolerant ...

Let's see. Trading systems?

Precise Recovery

Gap Recovery

There are at least 26 race conditions in FIX 4.2 Order Cancel/Replace/Reject

And please. No stale data!

A most inconvenient truth

Simple is Hard

So relax. Let it fail. Let live and let's learn.

Copyright Push Technology 2012

Stop.

- -The network is **not** reliable **nor** is it cost free.
- -Latency is **not** zero
 - nor is it a democracy.
- -Bandwidth is **not** infinite
 - nor predictable especially the last mile!
- -There is **not only** one administrator
 - trust, relationships are key
- -Topology **does** change
 - It should, however, converge eventually
- -The network is **not** secure **nor** is the data that flows through it
- -Transport cost is **not** zero **but** what you **don't do** is **free**
- -The network is **not** homogeneous **nor** is it **smart**

Look.

- High Availability is not enough for Machine to Human
- High Experience requires more

Data has a time value – out of date data is bad.

- Data has variable relevance, based on location, device ...
- Data rates are faster than human perception
- You cannot send 100mb/sec down 3G networks
- You cannot send 100mb/sec down 3G networks
- You cannot ... waste is bad, bloats buffers, and 'slows' data.
- Currency & (Immediate) Consistency are important in M2H.

- M2H 'High Available Experience' might work for M2M ...

Listen.

- Every nuance comes with a set of tradeoffs.
- Choosing the right ones can be hard, but it pays off.
- Context, Environment are critical
- Break all the rules, one benchmark at a time.

– Benchmark Driven Development

Action: Data Distribution

Messaging remixed around:

Relevance - Queue depth for conflatable data should be 0 or 1. No more

Responsiveness - Use HTTP/REST for things. Stream the little things

Timeliness - It's relative. M2M != M2H.

Context - Packed binary, deltas mostly, snapshot on subscribe.

Environment- Don't send 1M 1K events to a mobile phone with 0.5mbps.

Action. Virtualize Client Queues

Nuance: Client telemetry. Tradeoff: Durable subscriptions harder

Action. Add data caching

One hop closer to the edge ...

Action. Exploit data structure

Snapshot recovery. Deltas or Changes mostly. Conserves bandwidth

Action. Behaviors

Extensible. Nuance? Roll your own protocols. Tradeoff? 3rd party code in the engine :/

3rd Party Code in the Engine?

- A bug in 3rd party code can take out the system.
- Is necessary in many environments.
- Can force low density deployments.
- Solutions are appearing, such as Waratek for the JVM.
 - You can hive out 3rd party code into a lightweight fully isolated container.
 - You can manage the container lifecycle.
 - You can reallocate memory, CPU, network.
 - It's language level virtualization.

Action. Structural Conflation

Ensures only current + consistent data is distributed. Actively soaks up bloat. Extensible!

Action. Structural Conflation [EEP]

Replace

- Replace/Overwrite 'A1' with 'A2'
- 'Current data right now'
- Fast

- Merge A1, A2 under some operation.
 - Operation is pluggable
 - Tunable consistency
 - Performance f(operation)

Client? Connection & Transport Cascading

An extreme example.

- Ramp clients continuously
- 100 messages per second per client
- Payload: 125 .. 2000 bytes
- Message style vs with conflation

- Really simple. 1 client
- Ping Pong. Measure RTT time.
- Payload: 125 .. 2000 bytes

- 2.4 us. A tuned benchmark in C with low latency 10Ge NIC, with kernel bypass, with FPGA acceleration
- 5.0 us. A basic java benchmark as good as it gets in java
- Diffusion is measurably 'moving to the left' release on release
- We've been actively tracking and continuously improving since 4.0

Throughput. Server view. Nonconflated data

- Cold start server
- Ramp 750 clients 'simultaneously' at 5 second intervals
- 5 minute benchmark duration
- Clients onboarded linearly until IO (here) or compute saturation occurs.
- What the 'server' sees

Throughput. Client view. Nonconflated data.

WebSocket Messages Per Second Per Client No Conflation

- What the 'client' sees
- At and beyond saturation of some resource?
- Things break!
- New connections fail. Good.
- Long established connections ok.
- Recent connections timeout and client connections are dropped. Good.
- Diffusion handles smaller message sizes more gracefully
- Back-pressure 'waveform' can be tuned out. Or, you could use structural conflation!

Throughput. Server view. Replaceconflated

- Cold start server
- Ramp 750 clients 'simultaneously' at 5 second intervals
- 5 minute benchmark duration
- Clients onboarded linearly until IO (here) or compute saturation occurs.
- Takes longer to saturate than nonconflated case
- Handles more concurrent connections
- Again, 'server' view

Bandwidth GBsec

Throughput. Client view. Replace-Conflated

WebSocket Messages Per Second Per Client Replace Conflation

- What the 'client' sees
- Once saturation occurs Diffusion adapts actively by degrading messages per second per client
- This is good. Soak up the peaks through fairer distribution of data.
- Handles spikes in number of connections, volume of data or saturation of other resources using a single load adaptive mechanism

Can failure be fun?

- Where do HA algorithms fail humans?
- Can consistent experiences be delivered elapsing short, medium and longer term failures?
- Does an M2H eye for an M2M guy even work?

Who knows. Let's figure it out! 😳

My 'number'

H6752

- Thank you for listening to, having me
- Le twitter: @darachennis
- Work. <u>http://www.pushtechnology.com/</u>
- Fun. <u>http://github.com/darach/</u>
- Grab me any time on Weds/Thurs.
- Like Erlang? Big Data? London User Group meetup. Thurs March 7th, QE2 18:30 – 20:00. (Google for registration details).

Questions?

