
BLOOMIN' MARVELLOUS
WHY PROBABLY CAN BE BETTER THAN DEFINITELY

Adrian Colyer, @adriancolyer

http://twitter.com/adriancolyer

AGENDA
Introduction & motivation
Bloom filters
Tuning
Hashing
Related applications of PDSs

TRAFFIC SURVEILLANCE
For every traffic camera in London, for every 24 hour period,

answer the question 'did a vehicle with plate <license no> pass
this camera?'

(assume we have reliable video feed -> license number conversion available for each camera)

SET MEMBERSHIP
Given the set of all vehicles that passed a camera, we want an

efficient membership test.

APPROACHES (PER CAMERA SITE)
Look-up table:
Keep a list of every plate we see
Keep a HashSet of every plate we see

LicensePlate µ Bool

HASHSET

XXYY ZZZ

Buckets

Hash

CAN WE DO BETTER?
Time: avg. O(1), worst O(n)
Space: O(n)
We never need to enumerate the members...

JUST THE HASH - MUCH LESS SPACE
0

1

1

0

0

0

1

0

1

0

0

1

0

0

XXYY ZZZ

Bit Buckets

Hash

COPING WITH HASH COLLISIONS
0

1

1

0

0

0

1

0

1

0

0

1

0

0

XXYY ZZZ

Bit Buckets

k hashes

m buckets

BLOOM FILTERS
m-bit vector
k independent hashes
to add an element: set bit for each hash
membership test: hash and verify all bits set

BLOOM FILTER PROPERTIES
No false negatives
May generate false positives

Error rate can be tuned by varying m and k
Constant in both space and time, regardless of number of
items in the set
Can only add items
Very useful as a cheap guard in front of an expensive operation

IN THE WILD
HBase, BigTable, Cassandra, ...
Distributed IMDG
Bloom joins
Malicious URL identification in Chrome
Networking (e.g. loop detection in routing)
...

TUNING BLOOM FILTER ACCURACY
Given an expected number of members , bits, and hash

functions, how should we choose and in order to achieve an
acceptable false positive rate?

n m k
m k

Consider the insertion of an element, and an individual hash
function. The probability that a given bit is set is . Therefore

the probability that a given bit is not set is:
1/m

1 −
1
m

And the probability that a given bit is not set by all hash
functions is:

k

(1 −)1
m

k

The probability that a given bit is not set after inserting n
elements is simply:

b(1 −)1
m

kn

e−kn/m

and the probability an indidividual bit is set is therefore

(1 −)e−kn/m

What is the probability we test an element that is not in the set,
and get back all 1s? (A false positive).

p

p b (1 −)e−kn/m k

(all bits must be 1)k

and the optimal value of given and (so as to minimise) isk m n p

k = ln 2
m
n

We always want to be optimal! Substituting for in the formula
for and then solving for gives:

k
p m

m = −
n ln p

(ln 2)2

APPLYING THESE RESULTS:
1. Decide on an acceptable false positive rate , and estimate

number of members in the set, .

2. Set

3. Set

p
n

m = − n ln p

(ln 2)2

k = ln 2m
n

EXAMPLES
Set size False positive

%
m k bits per

member
100,000 1% ~960,000 (117KB) 7 9.6
100,000 0.1% ~1,440,000

(176KB)
10 14.4

10M 1% ~96M (11.4MB) 7 9.6
10M 0.1% ~144M (17MB) 10 14.4

URL USE CASE COMPARISON
Assume an average URL is 35 characters, 10M URLs...

HashSet requires at least 350MB to store
Bloom Filter with 1% false positive requires 11.4MB

About 3% of the space!

BACK TO OUR TRAFFIC PROBLEM...
There are alone110 count points in Westminster

~20,000 vehicles/day/point

~23.5Kb per count point (1% false positive)

Only 2.5MB per day for all of Westminster!

http://www.dft.gov.uk/traffic-counts/cp.php?la=Westminster#48578

A HASHING DIGRESSION
Where can we find independent hash algorithms?
And how good does the hash have to be?

k

and

INDEPENDENCE
Events and are independent ifA B

Pr(A C B) = Pr(A). Pr(B)
In other words:

Pr(A|B) = Pr(A)

Pr(B|A) = Pr(B)

MUTUAL INDEPENDENCE
Given a set of random variables , any subset

 and any values
, , . . . ,X1 X2 Xn

I [1, n] , i # Ix i

Then are mutually independent if, , . . . ,X1 X2 Xn

Pr(=) = Pr(=)⋂
i#I

Xi x i ∏
i#I

X i x i

K-WISE INDEPENDENCE*
Restrict , then our set of random variables

is k-wise independent if, for all subsets of k variables or fewer
|I| ~ k , , . . . ,X1 X2 Xn

Pr(=) = Pr(=)⋂
i#I

Xi x i ∏
i#I

X i x i

When we call this pairwise independencek = 2
* this is not the same as the hash functions in our bloom filter!k k

PAIRWISE EXAMPLE
Consider three variables and , where and are truly

random, and .
a, b x a b

x = a + b
Pairwise-independence
But not 3-wise

THEORY AND PRACTICE
In theory, hash functions have uniform distribution over the

range, and independence of hash values over the domain.

In practice such hash functions are expensive to compute and
store. For non-cryptographic applications we can use more

efficient algorithms with weaker guarantees.

STRONGLY UNIVERSAL HASH FUNCTIONS
Consider a set (the universe) of values we want to hash, and a

family of hash functions that create an n-bit hash.
U



For any elements
And for any randomly selected hash function
Uniform distribution:

k , , . . . , # Ux1 x2 x k

h # 

Pr(h() =) = 1/nx1 y1

AND K-WISE INDEPENDENCE
Given elements and output values k , , . . . , # Ux1 x2 x k k

, , . . . ,y1 y2 yk

Pr(h() =) =⋂
i=1

k

x i yi
1
nk

when we have a 2-universal or pairwise independent hash
family

k = 2

2-UNIVERSAL GOOD ENOUGH?
 show that with minimal entropy in

data items, 2-universal hashes perform as predicted for truly
random hashes.
Bloom Filters and non-cryptographic applications

use hash functions from a 2-universal family
Caution required when influenced by external input:

 can exploit collisions

Mitzenmacher and Vadhan

k
hash DoS

attacks

http://people.seas.harvard.edu/~salil/research/streamhash-Jun10.pdf
http://www.ocert.org/advisories/ocert-2012-001.html

2-UNIVERSAL: SIMPLE IN PRINCIPLE
h(x) = ax + b mod p

 is a prime
 and chosen uniformly between and for each hash

function in family

p
a b 0 p − 1

SELECTED HASH ALGORITHMS
Can hash about 5GB/sec on dual-core 3.0GHz x64
Very good key distribution

Very good performance and distribution

competitive performance
protects against hash DoS attacks

MurmurHash3

xxhash

SipHash

https://code.google.com/p/smhasher/
https://code.google.com/p/xxhash/
https://131002.net/siphash/

EFFICIENT BLOOM FILTER IMPLEMENTATION
Hashing is the most expensive operation

 show that we can simulate
independent hash functions using only 2 base functions.
Extended double hashing: to hash input

for
and is a total function from

See

Kirsch and Mitzenmacher k

u # U
((u) + i (u) + f (i)) mod mh1 h2

i # 1..k
f (i) [k] µ [m]

Cassandra implementation notes (Ellis)

http://www.eecs.harvard.edu/~kirsch/pubs/bbbf/esa06.pdf
http://spyced.blogspot.co.uk/2009/01/all-you-ever-wanted-to-know-about.html

RELATED APPLICATIONS

STREAM SUMMARIES WITH SKETCHES
Estimating cardinality (# of distinct values seen)
Estimating frequency with which values appear in a stream
Finding heavy hitters (top-k most frequent items)
Quantile estimations
Range estimations
...

CARDINALITY ESTIMATION
: 16 character Ids, 3 billion events/day,

how many distinct ids in the logs?
Clearspring case study

HashSet with 1 in 3 unique Ids still needs at least 119GB
Simple solution - linear counting
Very space efficient solution - HyperLogLog

http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html

LINEAR COUNTING
0

1

1

0

0

0

1

0

1

0

0

1

0

0

ID

Bit Buckets

Hash

m

Estimate the number of distinct elements using:

where is the weight of the bitset, i.e. the number of 1s
Rule of thumb for choosing : about 0.1 bits per expected
upper bound of measured cardinality
~12MB for the ID problem (vs 119GB)

n
n = −m ln

m − w
m

w
m

HYPERLOGLOG
More sophisticated, but still based on hashing and probabilities
To estimate cardinalities up to 1 billion, with % accuracy
needs bits:

2% accuracy, ~ 1.5KB!

a
m

m = 5()1.04
a

2

INTERACTIVE DEMONSTRATION
AK Tech blog

http://www.aggregateknowledge.com/science/blog/hll.html

COUNT-MIN SKETCH

+1

+1

+1

+1

+1

w counters

d
rows

Value

h1

h2

h3

h4

h5

Pairwise independent hash functions

FREQUENCY ESTIMATION OF ITEM i
Lowest count at hash locations

Improve accuracy by factoring in adjacent counter in each row
score (Count sketch)

Subtract value to the left for even rows, to the right for odd
rows
Accounts better for random noise

See also Count-Mean-Min variation...
This family of algorithms work best with highly skewed data

f (i) = C[j, (i)]min
j=1..d

hj

Probabilistic Data Structures for Web Analytics and Data Mining
| Highly Scalable Blog - Ilya Katsov

http://highlyscalable.wordpress.com/2012/05/01/probabilistic-structures-web-analytics-data-mining/

RESOURCES

 - Apache 2.0 Licensed Java implementations

Bloom filters by Example (Bill Mill)
Probabilistic Data Structures for Web Analytics and Data
Mining | Highly Scalable Blog - Ilya Katsov
Sketch Techniques for Approximate Query Processing
(Cormode)
Probability and Computing (Mitzenmacher and Upfal)
stream-lib

http://billmill.org/bloomfilter-tutorial/
http://highlyscalable.wordpress.com/2012/05/01/probabilistic-structures-web-analytics-data-mining/
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
http://www.amazon.co.uk/Probability-Computing-Randomized-Algorithms-Probabilistic/dp/0521835402/ref=sr_1_1
https://github.com/addthis/stream-lib

