O g
yt 3 A
c3 . 3

QO = S

S'‘C S & ==
e._&m & OR
L Oz
e oS

the morning paper

an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer Home

A Year in Papers blog.acolyer.org

DECEMBER 14, 2015

‘We've reached the end of term again, and I'm taking a break from writing

never miss an issue! The

up papers over the holidays — a chance to replenish my backlog and start e i

planning for 2016 too! I want to see what I can do to improve the straight to your inbox.

readability of the site as well. The Morning Paper will resume on the 4th

January. SEARCH 3 5 0

In a moment I'll share with you the top 10 most read and most tweeted Itype and press enter

papers, plus some of my own picks. But first a quick look back over the

year. Through the course of 2015 I've posted 206 paper write-ups on The ARCHIVES

Morning Paper plus a few original pieces and other miscellaneous posts. | Select Month v

That means I'm now at over 300 paper reviews in total since

#themorningpaper began. It's amazing how a little every day adds up over MAST BESIN THE Qg F O u n d at i O n S

LAST FEW DAYS

time!
)) ARIES: A
I'd like to say a huge thank-you to everyone who's been following along, I Transaction .
love all the interaction that the papers lead to. And if you're not yet Recovery Method F rO n t I e rS
subscribed to The Morning Paper and you're looking for a New Years Supporting Fine-

s e 5 " Y Granularity Locki
Resolution. sienine up to the mailine list will eet vou iz T s

5 Reasons to <3 Papers

03
Applied
Lessons

04

The Great

02 Conversation

Raise

Expectations
05

Uneven
Distribution

01
Thinking
tools

Scalability - but at what COST?

Frank McSherry

1000 ¢
50T g
5
- | system B g :
o | i
u B
W
1 T S R e S Qb — v L)
1 10 100 300 1 10 100 300

cores cores

Elapsed times for 20 PageRank iterations

Single thread — RAM (1)
Single thread — SSD (1)
GraphX (128)

GraphlLab (128)

Giraph (128)

Spark (128)

T
&
8
3,
=
@
&

X-Stream (16)

Stratosphere (16)

GraphChi (2)
500 1000 1500 2000 2500 3000

seconds

But you have BIG Data!

0.6

0.4

0.2 -

VeRPLPFILELFIPFET PP

Zipf Distribution

“Working sets are Zipf-
distributed. We can
therefore store in memory all
but the very largest
datasets.”

Musketeer

One for all?

Musketeer: all for one, one for all in data processing systems

Ionel Gog Malte Schwarzkopf Natacha Crooks’ Matthew P. Grosvenor
Allen Clement™ Steven Hand*
University of Cambridge T Max Planck Institute for Sofrware Systems

* now at Google, Inc.

Abstract

Many systems for the parallel processing of big data are i

available today. Yet, few users can tell by intuition which SparksS0QL —— spark | SparkSOL S0,
system, or combination of systems, is “best” for a given GraphX i 1 GraphX ,‘:-."1‘ 7
workflow. Porting workflows between systems is tedious. Lindi ! i 4 P

Hence. users become “locked in”, despite faster or more ef- GraphLING % Malad | GraphLING 4

ficient systems being available. This is a direct consequence i

of the tight coupling between user-facing front-ends that ex- Coupled {curant) ; Dacoupled (Musksteer)

press workflows (e.g.. Hive, SparkSQL, Lindi. GraphLINQ) i
and the back-end execution engines that run them fe.g., “g““? L: Det_:oup].u?g fl'D_ﬂT.—BIId fra.me.w_o?{ks and back-end
MapReduce, Spark, PowerGraph, Naiad). execution engines (right) increases flexibility.

We argue that the ways that workflows are defined should

Makespan [sec]

0 -
01 051 2 4 81632
Input size [GB; log,-scale]

Number of articles

Approx Hadoop

3 | | I [3
- (a) Wikipedia Length -
Approximate ——+—
= Precise 7
= | | I I

500 1000 1500 2000 2500 3000

Page size (bytes)

The Scalable Commutativity Rule

Improve your API Design

*)
fEEf

EEEE

EEEE

mmap
= open

open
link
unlink
rename
stat

fstat
Iseek
close
pipe

read
write
pread
pwrite
mmap
munmap
mprotect
memread 19 20
memwrite u

Linux (9,389 of 13,664 cases scale) svb (13,528 of 13,664 cases scale)

Figure 6: Scalability for system call pairs, showing the fraction and number of test cases generated by CoOM-
MUTER that are not conflict-free for each system call pair. One example test case was shown in Figure 5.

Raising Your
Expectations

Not-quite-so-broken TLS: lessons in re-engineering a security protocol
specification and implementation

David Ka]uper—MerﬁinjakT. Hannes Mehnert', Anil Madhavapeddy and Peter Sewell
University of Cambridge Computer Laboratory
first.last@cl.cam.ac.uk

¥ These authors centributed equally to this work

Abstract

Transport Layer Security (TLS) implementations have a
history of security flaws. The immediate causes of these
are often programming errors, e.g. in memory manage-
ment, but the root canses are more fundamental: the chal-
lenges of interpreting the ambiguous prose specification,
the complexities inherent in large APIs and code bases.
inherently unsafe programming choices, and the impos-
sibility of directly testing conformance between imple-
mentations and the specification.

We present ngsh-TLS, the result of our re-engineered
approach to security protocol specification and imple-
mentation that addresses these root causes. The same
code serves two roles: it is both a specification of TLS,
executable as a test oracle to check conformance of traces
from arbitrary implementations, and a usable implemen-
tation of TLS; a modular and declarative programming
style provides clean separation between its components.
Many security flaws are thus excluded by construction.

ngsh-TLS can be used in standalone Unix applica-
tions, which we demonstrate with a messaging client,
and can also be compiled into Xen unikernels (spe-
cialised virtual machine image) with a trusted comput=
ing base (TCB) that is 4% of a standalone system run-
ning a standard Linux/OpenSSL stack, with all network

sensitive services, they are not providing the security we
need. Transport Layer Security (TLS) is the most widely
deployed security protocol on the Internet. used for au-
thentication and confidentiality. but a long history of ex-
ploits shows that its implementations have failed to guar-
antee either property. Analysis of these exploits typically
focusses on their immediate causes, e.g. errors in mem-
ory management or control flow, but we believe their root
causes are more fundamental:

Error-prone languages: historical choices of pro-
gramming language and programming style that tend to
lead to such errors rather than protecting against them.

Lack of separation: the complexities inherent in
working with large code bases, exacerbated by lack of
emphasis on clean separation of concerns and modular-
ity, and by poor language support for those.

Ambiguous and untestable specifications: the chal-
lenges of writing and interpreting the large and ambigu-
ous prose specifications, and the impossibility of di-
rectly testing conformance between implementations and
a prose specification.

In this paper we report on an experiment in developing
a practical and usable TLS stack, ngsb-TLS. using a new
aonmach desiened to address each of these moot=canse

CVEs
Jan 14 -Jan ‘15

54

| Error prone languages
Lack of Separation
Ambiguous and
Untestable Spec

Surely we can do
better?

Do Less Testing!

The Art of Testing Less without Sacrificing Quality

Kim Herzig' Michaela Greiler® Jacek Czerwonka® Brendan Murphy'
kimhi@microsoft.com mgreiler@microsoft.com Jacekezi@microsoft.com bmurphy@microsoft.com

iMicrosoft Research, United Kingdom

M iCFOSOft Wi ndows 8 1 " Microsoft Corporation, Redmond, United States

Relative Improvement Cost Improvement

Test Executions 40.58%

Test Time 40.31% $1,567,608

Test Result Inspection 33.04% $61,533

Escaped Defects 0.20% ($11,971)

Total Cost Balance $1,617,170

Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-Production Failures

Baris Kasikci' Benjamin Schubert!

Cristiano Pereira® Gilles Pokam?

George Candea’

! { baris. kasikci benjamin.schubert, george candea | @epfl.ch *{ cristiano. . pereira,gilles.a.pokam } @intel.com
! School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)
? Intel Corporation

Abstract

Developers spend a lot of time searching for the root causes
of software fallures. For this, they traditionally try to re-
produce those failures, but unfortunately many failures are
s0 hard to reproduce in a test environment that developers
spend days or weeks as ad-hoc detectives. The shortcomings
of many solutions proposed for this problem prevent their
use in practice.

We propose failure sketching, an automated debugging
technique that provides developers with an explanation
(“failure sketch”} of the root cause of a failure that occurred
in production. A failure sketch only contains program state-
ments that lead to the failure, and it clearly shows the differ-
ences between failing and successful runs; these differences
guide developers to the root cause. Our approach combines
static program analysis with a cooperative and adaptive form
of dynamic program analysis.

We built Gist. a prototype for failure sketching that relies
on hardware watchpoints and a new hardware feature for ex-
tracting control flow traces (Intel Processor Trace). We show
that Gist can build failure sketches with low overhead for
failures in systems like Apache, SQLite, and Memcached.

1. Introduction

Debugging—the process of finding and fixing bugs—is
time-consuming {around 50% [44] of the development time).
This is because debugging requires a deep understanding of
the code and the bug. Misunderstanding the code or the bug

can lead to incorrect fixes, or worse, to fixes that introduce
P B T T L |

Traditionally, debugging is done in an iterative fashion:
the developer runs the failing program over and over in a
debugger., hoping to reproduce the failure, understand its
root cause, and finally fix it. Fixing buas generally requires
the diagnosis of the root cause.

Intuitively, a root cause is the gist of the failure: it is a
cause, or a combination of causes. which when removed
from the program, prevents the failure associated with the
root cause from recurring [74]. More precisely, a mot cause
of a failure is the negation of the predicate that needs to be
enforced so that the execution is constrained to not encounter
the failure [80].

The ability to reproduce failures is essential to traditional
debugging, because developers rely on reproducing bugs to
diagnose root causes. A recent study at Google [57] revealed
that developers™ ability to reproduce bugs is essential to
fixing them. However, in practice, it is not always possible to
reproduce bugs. and practitioners report that it takes weeks
to fix hard-to-reproduce concurrency bugs [18].

The greatest challenge though. is posed by bugs that
only recur in production and cannot be reproduced in-house.
Diagnosing the root cause and fixing such bugs is truly
hard. In [57]. developers noted: “We don’t have tools for
the once every 24 hours bugs in a 100 machine cluster™ An
informal poll on Quora [54] asked “What is a coder's worst
nightmare,” and the answers were “The bug only occurs in
production and can 't be replicated locally,” and “The cause
af the bug is unknown.”

A promising method to cope with hard to reproduce bugs
is using record/replay systems [2, 46]. Recordfreplay sys-

Type: Concurrency bug, double-free

LT LIt L

Failure (double free)

Time Thread T, Thread T, obj->refent
1 decrement refcount(obj){ 1 decrement_refcount(obj){| 1

2 if (lobj->complete) { 2 if (lobj->complete) | 2

3 obJect t *mob] = ... 3 bject t *mobj = 3 p—_—

4 dec{&obj->refent); 4 i1

5 5 dec{&obj->refent); 5 0:

6 6 if (lobj->refent) { i

7 o 7

g if [dobg=arefent) f R Gy]

" EreR (a3 o g | :

Figure 8: The failure sketch of Apache bug #21287. The
grayed-out components are not part of the ideal failure
sketch, but they appear in the sketch that Gist automati-

cally computes.

Lessons from the
Field

A Masterclass in Config Mgt

at Facebook

Holistic Configuration Management at Facebook

Chungiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl
Facebook Inc.

{tang, thawan, pradvenkat, akshay, wenzhe, aravindn, pdowell, robertkarl }@fb.com

Abstract

Facebook’s web site and mobile apps are very dynamic.
Every day. they undergo thousands of online configuration
changes, and execute trillions of configuration checks to
personalize the product features experienced by hundreds
of million of daily active users. For example, configuration
changes help manage the rollouts of new product features,
perform A/B testing experiments on mobile devices to iden-
tify the best echo-canceling parameters for VolP, rebalance

the many challenges. This paper presents Facebook's holistic
configuration management solution. Facebook uses Chef [7]
to manage OS settings and software deployment [11], which
is not the focus of this paper. Instead, we focus on the home-
grown tools for managing applications’ dynamic runtime
configurations that may be updated live multiple times a
day, without application redeployment or restart. Examples
include gating product rollouts, managing application=level
traffic. and running A/B testing experiments.

Machine Learning Systems

lessons from Google

Feature

Ad Click Prediction: a View from the Trenches Management

H. Brendan McMahan, Gary Holt, D. Sculler, Michael Young,
Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,
Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy Kubica
Google, Inc.

mcmahan@google.com, gholt@google.com, dsculley@google.com

Visualisation

Relative Metrics

Systematic Bias
Correction

Machine Learning:
The High-Interest Credit Card of Technical Debt

i Alerts on action
Thresholds

The Great Conversation

And the Syntopicon

-
.
-
|
- |
-
L

Cross-Fertilization

Broad Exposure to Problems and their Solutions

Security Robotics

Distributed
Systems

Machine Learning

Databases Programming

Languages

® ® @ AndManyMore
Operating Systems, Algorithms,
Networking,Optimisation, SW Engineering,...

TPC-C-1992

ry... The TPC is a non-profit corporation focused on developing data-centric benchmark standards and disseminating objective, verifiable perfors

B Home What's New

F Results e e
January 11, 2016 TPC announces a new database virtualization benchmark

R January 11, 2016 TPC announces TPC DS 2.0
B TPC Documentation

® Technical Articles TPC Benchmarks & Benchmark Results
B Related Links Please select any of the active TPC benchmarks below. All available options will be displayed.
EwWhat's New (If your browser does not support all of the new features used, please select 'Results' in the navigation

bar on the left for a 'text-only" version.)

About the TPC
TPC-C - Top Ten Performance Results =L Frint

Version 5 Results Asof 1-Mar-2016 at 9:45 AM [GMT] =3 Version

Mote 1: The TPC believes it is not valid to compare prices or price/performance of results in different currencies.

'® All Results ' Clustered Results ' Non-Clustered Results Currency | All v

Performance System Date
Rank Co System Pri mC Watts/KtpmC TP Monito
S liatids = {tpmC) ricm/ e i Availability Onitor cubmitted
SPARC T5-8 Oracle 11g Release 2 Enterprise Edition) Oracle Tuxedao
1 |[ORACLE 8,552,523 .55 USD NR 09/25/13 Oracle Solaris 11.1 03/26/13
Server G S i ractes Partanning race selars CFSR 26/
Dell PowerEdge Microsoft Windows 2012 |Microsoft
112,890 19 USD NR 11/25/14 |SQL Anywhere 16 11/25/14
T620 ’ LEEhlES (L Anvitens Standard x64 CoM+ e

TPC-Pricing

TPC-C Published Record Holder

Database Manager
Performance (tpmC)
Performance (tps)
System Cost
#Processors

#Threads

Mar 26th 2013

Oracle 11g r2 Enterprise Edition w. Partitioning

8,552,523 (8.5M)

142,542 (143K)

$4,663,073

TPC-C

Informal Invariant Description Type Txns | Z-C

1 YTD wh sales = sum(YTD district sales) MV P Yes

2 Per-district order IDs are sequential Sp+FK | N,D | No _

3 New order IDs are sequentially assigned Sib N,D | No E :;’m N

4 Per-district, item order count = roll-up MV N Yes ;;5: 10M |

5 Order carrier is set iff order is pending FK N,D | Yes E, gm i

6 Per-order item count = line item roll-up MV N Yes g 4aM

7 Delivery date set iff carrier ID set FK D Yes % I

8 | YTD wh = sum(historical wh) MV D Yes = 0

9 YTD district = sum(historical district) MV P Yes 5 80K

10 | Customer balance matches expenditures MV (EE Yes % e

11 | Orders reference New-Orders table FK N Yes 2

12 | Per-customer balance = cust. expenditures | MV P D Yes % 40K |- i
5 20K | .
-§’ 0 | | |
E 0 50 100 150 200

Number of Servers

Figure 6: Coordination-avoiding New-Order scalability.

Multi-Partition Transactions at Scale

Scalable Atomic Visibility with RAMP Transactions

Peter Bailis, Alan Fekete®, Ali GhﬂgSi, Joseph M. Helle <~ NWNR - RAMP-F = RAMP-H -8 RAMP-S
UC Berkeley and ' University of Sydney 8M

&M

ABSTRACT are fast but deliver incon

liver consistent results bul
failure. Many of the larg
protocols that guarantee f
few—if any—transaction
sets of data stems [11, 13,
rect behavior for use cas

ing secondary indexing. fi

Databases can provide scalability by partitioning data across several
servers. However, multi-partition, multi-operation transactional ac-
cess 1s often expensive, employing coordination-intensive locking,
validation. or scheduling mechanisms. Accordingly. many real-
world systems avoid mechanisms that provide useful semantics for
multi-partition operations. This leads to incorrect behavior for a
ications i i indexine. foreien kev

Throughput (ops/s)
2

operations/s/server

Number of Servers

Figure 4: RAMP transactions scale linearly to over 7 million
e operations/s with comparable performance to NWNR baseline.

umoq apisdn pjiom JnoA buruin|

Unevenly Distributed

 iusssbbanssnss

Human

computers

at Dryden by NACA (NASA) -
Dryden Flight Research Center
Photo Collection

http://www.dfrc.nasa.
gov/Gallery/Photo/Places/HTML/E49-54.html.
Licensed under Public Domain via Commons -
https://commons.wikimedia.org/wiki/File:
Human_computers_-_Dryden.jpg#/media/File:
Human_computers_-_Dryden.jpg

Computing on a Human Scale

File on Registers
desk & L1-L3
Office filing Main
m cabinet 70“3 memory
warehouse
25

All Change Please

Next Generation Hardware

N
Compute Networking

HTM 100GbE
Q Persistent Memory NI ‘ ’ RDMA Q
FPGA
GPUs
Memory ' Storage
Q NVDIMMs NVMe Q
Next-gen NVM

Persistent Memory

J/

Computing on a Human Scale

File on
desk

cabinet

Office filing m

Trip to the
warehouse

4 3h20m

4x capacity
fireproof local
filing cabinets

Phone
another office
(RDMA)
Next-gen

warehouse

The New ~Numbers Everyone Should Know

Latency Bandwidth Capacity/IOPS
Register 0.25ns
L1 cache 1ns
L2 cache 3ns 8MB
L3 cache 11ns 45MB
DRAM 62ns 120GBs 6TB - 4 socket
NVRAM' DIMM 620ns 60GBs 24TB - 4 socket
1-sided RDMA in Data Center 1.4us 100GbE ~700K IOPS
RPC in Data Center 2.4us 100GbE ~400K I0PS
NVRAM’ NVMe 12us 6GBs 16TB/disk,~2M/600K
NVRAM’ NVMf 90us 5GBs 16TB/disk, ~700/600K

Low Latency - RAMCloud

Reads

Writes

The RAMCloud Storage System

JOHN QUSTERHOUT, ARJUN GOPALAN, ASHISH GUPTA, ANKITA KEJRIWAL,
GCOLLIN LEE, BEHNAM MONTAZERI, DIEGO ONGARQ, SEO JIN PARK, HENRY QIN,
MENDEL ROSENBLUM, STEPHEN RUMBLE, and RYAN STUTSMAN, Stanford University

Transactions

27ps 5-object Txns

TPC-C (10 nodes)

RAMCloud is a storage system that provides low-latency access to large-scale datasets. To achieve low
latency, RAMCloud stores all data in DRAM at all times. To support large capacities (1 PB or more), it
aggregates the memories of thousands of servers into a single coherent key-value store. RAMCloud ensures
the durability of DRAM-based data by keeping backup eopies on secondary storage. It uses a uniform log-
structured mechanism to manage both DRAM and secondary storage, which results in high performance and
efficient memory usage. RAMCloud uses a polling-based approach to communication, bypassing the kernel
to communicate direetly with NICs; with this approach, client applications can read small objects from any

Implementing Linearizability at Large Scale and Low Latency

Collin Lee®, Seo Jin Park®, Ankita Kejriwal, Satoshi Matsushita’, and John Qusterhout
Stanford University, '"NEC

Life beyond Distributed Transactions:

an Apostate’s Opinion

Position Paper

Pat Helland
Amazon.Com

705 Fifth Ave South
Seattle, WA 98104

The positions expressed i this paper are
personal opinions and do not in any way reflect
the positions of my emplover A com

ABSTRACT

Many decades of work have been invested in the
area of distributed ions includr

protocols such as 2PC, Paxos, and variuu;
approaches to quorum. These protocols provide
the application programmer a fagade of global
senalizability. Personally, | have nvested a non-
trivial portion of my career as a strong advocate

PHelland@Amazon.com

Instead, applications are built using different
techniques which do not provide the same
transactional guarantees but still meet the needs
of their businesses.

This paper explores and names some of the
practical approaches used in the implementations
of large-scale mussion-critical appheations in a
world which rejects distributed transactions. We
discuss the management of fine-grained pieces of
application data which may be repartitioned over
time as the application grows. We also discuss
the design pattemns used in sending messages

these hle nieces of data

No Compromises - FaRM

TPC-C (90 nodes)

99%ile
KV (per node)
at peak t

hput

No compromises: distributed transactions with
consistency, availability, and performance

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, Miguel Castro

Microsoft Research

Abstract

Transactions with strong consistency and high availability simplify building and reason-
ing about distributed systems. However, previous implementations performed poorly. This
forced system designers to avoid transactions completely, to weaken consistency guaran-

No Compromises

“This paper demonstrates that new software in modern
data centers can eliminate the need to compromaise. It
describes the transaction, replication, and recovery
protocols in FaRM, a main memory distributed computing
platform. FaRM provides distributed ACID transactions
with strict serializability, high availability, high
throughput and low latency. These protocols were
designed from first principles to leverage two hardware
trends appearing in data centers: fast commodity
networks with RDMA and an inexpensive approach to
providing non-volatile DRAM.”

The Doctor will see you now

DrTM

Fast In-memory Transaction Processing using RDMA and HTM

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, Haibo Chen

Shanghai Key Laboratory of Scalable Computing and Systems

Abstract

We present DrTM, a fast in-memory transaction process-
ing system that exploits advanced hardware features (ie..
RDMA and HTM) to improve latency and throughput by
over one order of magnitude compared to state-of-the-art
distributed transaction systems. The high performance of
DrTM are enabled by mostly offloading concurrency con-
trol within a local machine into HTM and leveraging the
strong consistency between RDMA and HTM to ensure se-

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

build a transaction processing system that is at least one
order of magnitude faster than the state-of-the-art systems
without using such features. To answer this guestion. this
paper presents the design and implementation of DrTM, a
fast in-memory transaction processing system that exploits
HTM and RDMA to run distributed transactions on a mod-
ern cluster.

Hardware transactional memory (HTM) has recently
come to the mass market in the form of Intel's restricted

5.5M tps on TPC-C
6-node cluster.

Some things Change,

From ARIES to MARS: Transaction Support for
Next-Generation, Solid-State Drives

Joel Coburn™ Steven S

Trevor Bunker® Meir Schwarz ~ Rajesh Gupta
Department of Computer Science and Engineering
University of California, San Diego
{jdcoburn.tbunker,rgupta.swanson } @cs.ucsd.edu

Abstract 1 Introduction

Emerging fast non-volatile memory (N
such as phase change memory, spin-torque
and the memristor promise to be orders of
than existing storage technologies (ie.,

Transaction-based systems often rely on write-ahead log-
ging (WAL) algorithms designed to maximize perfor-
mance on disk-based storage. However, emerging fast,
b{;f-«:ﬂdms&a‘:ﬁ; :;:;Y:Ia;:ml:ne::mz sr?::::f:cltmot: Such a dramatic improvement shifts the
& 5+ ph & % A o storage, system bus, main memory, and C]

ome stay the Same

Blurred Persistence
in Transactional Persistent Memory

Youyou Lu, Jiwu Shu®, Long Sun
Department of Computer Science and Technology, Tsinghua University, Beijing, China

e

luyouyou edu.cn, shujw

edu.cn. sun-112@mails.tsi edu.cn

MRAMs, and the memristor) present very different perfor- atiel will fosoe desiznets io Tetlink wag

mance characteristics, so blithel: lying existing algo- 2
S R S ALY & 28 PE performance by exp

Abstraci—Persistent memory provides data persistence at
main memory level and enables memory-level storage systems.
To ensure consistency of the storage systems, memory writes
need to be transactional and are carefully moved across the
boundary between the volatile CPU cache and the persistent
memory. Unfortunately, the CPU cache is hardware-controlled,
and it incurs high overhead for programs to track and move data
Dblocks from being volatile to persistent.

In this paper, we propose a software-based mechanism,
Blurred Persistence, to blur the volatility-persistence boundary,

tems. As shown in Figure 1. buffer management in main
memory is a white box for disk-based storage systems. while
that in the CPU cache is a black box for persistent memory.
Pages in main memory are managed by the operating system,
and programs can know the status and perform the persistence
operation on each page. With persistent memory, the CPU
cache is hardware controlled, and programs find it cumbersome
to track the status or perform the persistence operation for
each cached block. In persistent memory, programs either keep
the status of each page in the software, leading to extremely

A Brave New World

Fast RDMA networks +

Ample Persistent Memory +
Hardware Transactions +

Enhanced HW Cache Management +

Super-fast Storage +
On-board FPGAs + GPUs + ... = 27?

5 Reasons to <3 Papers

03
Applied
Lessons

04

The Great

02 Conversation

Raise

Expectations
05

Uneven
Distribution

01
Thinking
tools

the morning paper

Published at http://blog.acolyer.org.

‘\ 0 1 A new paper every weekday

an interesting,/ influential /important paper from the world of CS every weekday morning, as selected by Adrian Colyer Home

in Persistent Memory If you prefer email-based subscription to read at
JANUARY 21, 2016 your leisure.

Blurred Persistence: Efficient Transactions susscrise 0 2 Delivered Straight to your inbox

never miss an issue! The

Blurred Persistence: Efficient Transactions in Persistent

Mormning Paper delivered .
Memory - Lu, Shu, & Sun, 2015 diduanitie 0 3 Announced on Twitter
. I'm @adriancolyer.
We had software transactional memory (STM), then hardware support for @ y

SEARCH
transactional memory (HTM), and now with persistent memory in which
the memory plays the role of stable storage, we can have persistent |tyPe and press enter
transactional memory. And with persistent transactional memory, there’s
an issue that will surely make you smile with recognition: in-place of ARCMIVES Gotoa Papers We Love Meetup
managing the relationship between volatile memory and disk, we now have Select Month v A repository of.academlc CompUt.er science papers
to manage the relationship between the volatile CPU cache and memory! and a community who loves reading them.

It’s all the same considerations (forcing, stealing ete.) but in a new context MEFTREAD N THE
LAST FEW DAYS

and with a few new twists. Chief among those twists is that you have a lot Papers W.E LDVE f‘(x =X

less control over how and when the hardware moves data from cache to S sl

Platform fi
memory than you do over how and when you move data from memory to Diit;;:lezr
disk. Machine Learning Share What you |eal‘n
In case you find all these various permutations of non-volatile memory / i Anyone can take part in the great conversation.
storage confusing (I do!), then this might help: Chimera: Large-

Scale Classification
Usine Machine

THANKYOU !

@adriancolyer

4

