
Microservices in a
Streaming World

There are many good reasons for
building service-based systems

• Loose Coupling

• Bounded Contexts

• Autonomy

• Ease of scaling

• Composability

But when we do,
we’re building a distributed system

This can be a bit tricky

Monolithic & Centralised
Approaches

Shared, mutable state

Decentralisation

Stream Processing is
a bit different

batch analytics => real time => at scale => accurately

and comes with an
interesting toolset

Stream Processing
Toolset

Business Applications

Some fundamental
patterns of distributed

systems

Request / Response

Mediator / Workflow

Request/Response

Event Driven

Async / Fire and Forget

Event Based

• Simple

• Synchronous

• Event Driven

• Good decoupling

• Requires Broker

• Fire & Forget

• Polling

• Full decoupling

Request/Response vs.

SOA / Microservices

Message Broker

Event Based Request/Response

Combinations

Event-
Based

Request/
Response

Combinations
Withdraw

£100
Account

Service

General

Ledger

Customer

Statements

Fraud

Detection

Check

Funds

Async Message Broker

I need
 moneyReST

Services generally eschew
shared, mutable state

How do we put these
things together?

Request/Response

Request/Response

Request

Response

ReST

Request/Response
+ Registry

Registry

Request

Response

ReST

Asynchronous and
Event-Based

Communication

Queues

Point to Point

Service A Service B

Load Balancing

Instance 2

Instance 1

Single message allocation has scalability issues

Batched Allocation
Instance 1

Instance 2

Throughput!

Lose Ordering Guarantees

Fail!

Instance 1

Instance 2

Topics

Topics are Broadcast

Consumer

Consumer

Broker broadcast

Topics Retain Ordering

Trades

Buys

Sells

Broker Instance 1

Instance 2

Even when services fail

Trades

Buys

Sells

Fail!
Broker

We retain ordering, but we have to detect & reprovision

Instance 1

Instance 2

A Few Implications

Queues Lose Ordering
Guarantees at Scale

Fail!

Worker 1

Worker 2

Trades

Buys

Sells

Topics don’t provide
availability

Broker

Trades

Buys

Sells

Messages are Transient

Broker

Is there another way?

A Distributed Log
Kafka is one example

Think back to the queue
example

Batch

Batch

 Shard on the way in

Each shard is a queue

Strong Ordering (in shard). Good concurrency.

Each consuming service is assigned
a “personal set” of queues

each little queue is sent to only one service in a group

Services instances naturally
rebalance on failure

Service instance dies, data is redirected,
ordering guarantees remain

Very Scalable, Very High
Throughput

Sharded In, Sharded Out

Reduces to a globally
ordered queue

Fault Tolerance

The Log

Single seek & scan

Append
only

messages don’t need to be transient!

Cleaning the Log

Delete old segments

Cleaning the Log

Delete old versions that share the same key

K1
K1
K1
K2
K2

K2
K1

V1

V1

V2
V3

V2
V4
V3

• Scalable multiprocessing

• Strong partition-based ordering

• Efficient data retention

• Always on

So how is this useful
for microservices?

Build ‘Always On’ Services

Rely on Fault
Tolerant Broker

Load Balance Services

Load Balance Services
(with strong ordering)

Fault Tolerant Services

Services automatically
fail over

(retaining ordering)

Services can return back to
old messages in the log

Rewind & Replay

Compacted Topics are
Interesting

K1
K1
K1
K2
K2

K2
K1

V1

V1

V2
V3

V2
V4
V3

Lets take a little
example

Getting Exchange Rates

Exchange

Rate

Service

USD/GBP = 0.71
EUR/GBP = 0.77
USD/INR = 67.7
USD/AUD = 1.38
EUR/JPY = 114.41
…

I

need

exchange

rates!

Option1: Request Response

rate for USD/GBP?

0.71

Exchange

Rate

Service

I

need

exchange

rates!

Option 2: Publish Subscribe

Exchange

Rate

Service

Accumulate current state

ETL

I

need

exchange

rates!

Option 3: Accumulate in
Compacted Stream

Exchange

Rate

Service

Get all exchange
rates

Publish to clients

USD/GBP = 0.71
EUR/GBP = 0.77
USD/INR = 67.7
USD/AUD = 1.38
EUR/JPY = 114.41
…

Broker retains
latest versions

Publish all rate events

Is it a stream or is it a table?

transitory stateful

Datasets can live in the broker!

trades books

risk results
ex-

rates

Service Backbone
Scalable, Fault Tolerant, Concurrent, Strongly Ordered, Stateful

… lets add in stream
processing

Max(price)

From orders

where ccy=‘GBP’

over 1 day window

emitting every second

What is stream processing?

Continuous Queries.

What is stream processing
engine?

Data
Index

Query

Engine

Query

Enginevs

Database
Finite, well defined source

Stream Processor
Infinite, poorly defined source

Windowing

For unordered or unpredictable streams

Sliding

Fixed

(tumbling)

Features: similar to
database query engine

JoinFilterAggr-

egate View

Window

KStreams & KTables

stream

Compacted

stream

Join

Streaming Data

Stored Data

KStream

KTable

A little example…

Buying Lunch Abroad

Payments

Service

Exchange

Rates

Service

Buy

Notification

Service

Amount in ££

$$

$$

Text Message: ££

$$

Request-Response Option

Payments

Service

Exchange

Rates

Service

Buy

Amount in ££

Join etc

Text Message: ££

Iterative join
over the network

ETL Option

Payments

Service

Exchange

Rates

Service

Buy

Amount in ££

ETL

ETL
Join etc

Text Message: ££

Stream Processor Option

Payments

Service

Exchange

Rates

Service

Buy

Stream

Processor

join

etc

Text Message: ££

Buying Lunch Abroad

Payments

Exchange

Rates

Looks like

 a table

(compacted

stream)

Looks like

an infinite

stream

KStream

KTable

Buying Lunch Abroad

Payments

Exchange

Rates

• Filter(ccy<>’GBP’)
• Join on ccy
• Calculate GBP
• Send text message

buffering

Local DB (fast joins)

Topic

Compacted

Topic

KStream

pre-populate

KTables can also be written to
- they’re backed by the broker

Manage
intermediary

state

KStream

KTable

Topic

Compacted

Topic

Scales Out (MPP)

These tools are pretty
handy

for managing decentralised services

Talk our own data model

Data

Stream

View

Query

Handle Unpredictability

9am 5pm

Late trades

Joining Services

Payments

Exchange

Rates

Join

Duality between Stream and
Table

Join

KStream

KTable

More Complex Use Cases
Trades Valuations

Books Customers

General
Ledger

trades books

risk results
ex-

rates

Practical mechanism for managing data
intensive, loosely coupled services

• Stateful streams live
inside the Log

• Data extracted quickly!

• Fast, local joins, over
large datasets

• HA pre-caching

• Manage intermediary
state

• Just a simple library
(over Kafka)

There is much more to
stream processing
it is grounded in the world of big-data analytics

Simple Approaches

Just a library (over Kafka)

Keeping Services
Consistent

Big Global Bag of

State in the Sky

Problem: No BGBSS

How to you provide the
accuracy of this

In this?

Centralised vs Federated

Centralised
consistency model

Distributed
consistency model

One problem is failure

Duplicate messages are
inevitable

have I seen
this before?

Make Services Idempotent

try 1

try 2

try 3

try 4

Stream processors have to
solve this problem

Exactly Once

not available in Kafka… yet

So what do we have?

Use Both Approaches

Event-
Based

Request/
Response

Queued Delivery System

Ordered queue

Scales Horizontally

Scales Horizontally

Scales Horizontally

Scales Horizontally

Built In Fault Tolerance

Runs Always On

For Services Too

Scales Horizontally

Load Balance

continue through failure

Scales Horizontally

with history stored in the Log

Scales Horizontally

Extending to any number of
services

Scales Horizontally

With any data throughput

Scales Horizontally

With any data throughput

Scales Horizontally

With any data throughput

Scales Horizontally

powerful tools
for slicing and
dicing streams

Scales Horizontally

the declarative
processing of

data
join

filter
aggregate

at any
throughput

Scales Horizontally

leveraging
fast local

persistence

Scales Horizontally

backed up to
the log

Scales Horizontally

easily join
streaming
services

Blend
KStreams

and KTables

trades books

risk results
ex-

rates

with data living
in the stream

but retaining
loose coupling

trades books

risk results
ex-

rates

Scales Horizontally

with strong ordering and
repeatability guarantees

(eventually)

so…

Microservices push us away
from shared, mutable state

Big Global Bag of

State in the Sky

Away from BGBSS’s

This means data is
increasingly remote

Sure, you can collect it all

copy copy

copy

copy
copy

copy

copy

ETL

ETL

ETL ETL

ETL

ETL

can be a lot of work

Or you can look it all up

get
get

get

get
get

get

get

get, get,

get, get

but that doesn’t scale well
(with system complexity or with data throughput)

Better to embrace
decentralistion

We need a decentralised
toolset to do this

trades books

risk results
ex-

rates

Keep it simple,
Keep it moving

