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Outline

• Evolution of Coursera’s nearline execution systems

• Next-generation execution framework: Iguazú

• Iguazú application deep dive: 
GrID — evaluating programming assignments



Key Takeaways

• What is nearline execution, and why it is useful

• Best practices for running containers in production 
in the cloud

• Hardening techniques for securely operating 
container infrastructure at scale



A history of 
nearline execution
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Early days - Requirements

• Video re-encoding for distribution

• Grade computation for 100,000+ learners

• Pedagogical data exports for courses
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Upgrading to Scala
Re-architecting delayed execution for our 2nd generation 
learning platform.



Upgrading to the JVM

• Leverage mature Scala & JVM ecosystems for code 
sharing

• JVM much more reliable (no memory leaks)

• New job model: scheduled recurring jobs.
• Named: Saturn
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Problems with Saturn

• Single master meant naïve implementation ran all 
jobs in same JVM
• Huge CPU contention @ top of the hour

• OOM Exceptions & GC issues



Enter: Docker

Containers allow for resource isolation!

CC-by-2.0 https://www.flickr.com/photos/photohome_uk/1494590209
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ECS
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Resource 
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Clusters /
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Great
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Solution: Iguazú

Marissa Strniste (https://www.flickr.com/photos/mstrniste/5999464924) CC-BY-2.0 



Solution: Iguazú

• Framework & service for 
asynchronous execution
• Optimized Scala developer 

experience for Coursera

• Unified scheduler supports:
• Immediate execution (nearline)

• Scheduled recurring execution 
(cron-like)

• Deferred execution (run once @ 
time X)

Marissa Strniste (https://www.flickr.com/photos/mstrniste/5999464924) CC-BY-2.0 
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Autoscale, autoscale, 
autoscale!



Autoscaling⇄ Iguazú⇆ ECS
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Shutdown
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Failure in Nearline Systems

• Most jobs are non-idempotent

• Iguazú: At most once execution
• Time-bounded delay

• Future: At least once execution
• With caveats



Iguazú adoption by the numbers

~100 jobs in 
production

>1000 runs 
per day

>100 different job 
schedules



Iguazú Applications

Nearline Jobs

• Pedagogical Instructor 
Data Exports

• System Integrations
• Course Migrations

Scheduled Recurring Jobs

• Course Reminders
• System Integrations

• Payment reconciliation
• Course translations

• Housekeeping
• Build artifact archival
• A/B Experiments



While containers may help you 
on your journey, they are not 
themselves a destination.

CC-by-2.0 https://www.flickr.com/photos/usoceangov/5369581593



Writing an Iguazu Job

class AbReminderJob @Inject() (abClient: AbClient, email: EmailAPI) 

extends AbstractJob {

override val reservedCpu = 1024 // 1 CPU core

override val reservedMemory = 1024 // 1 GB RAM

def run(parameters: JsValue) = {

val experiments = abClient.findForgotten()

logger.info(s"Found ${experiments.size} forgotten experiments.")

experiments.foreach { experiment =>

sendReminder(experiment.owners, experiment.description)

}

}

}
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Testing an Iguazu job



The Hollywood Principle 
applies to distributed 
systems.

CC-by-2.0 https://www.flickr.com/photos/raindog808/354080327



Deploying a new Iguazu Job

• Developer
• merge into master… done

• Jenkins Build Steps
• Compile & package job JAR

• Prepare Docker image

• Pushes image into registry

• Register updated job with 
Amazon ECS API



Invoking an Iguazú Job

// invoking a job with one function call

// from another service via REST framework RPC

val invocationId = iguazuJobInvocationClient

.create(IguazuJobInvocationRequest(

jobName = "exportQuizGrades",

parameters = quizParams))



A clean 
environment 

increases reliability.
CC-by-2.0 https://www.flickr.com/photos/raindog808/354080327



Evaluating Programming 
Assignments
An application of Iguazú
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Solution: GrID

Patrick Hoesly (https://www.flickr.com/photos/zooboing/5665221326/) CC-BY-2.0 

• Service + framework for grading
programming assignments

• Builds on Iguazú

• Named for Tron’s “digital frontier”
• Backronym: Grading Inside Docker
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Design Goals

Elastic 
Infrastructure

No 
Maintenance

Near Real-time Secure 
Infrastructure



Programming Assignments



The Security Challenge

Compiling and running untrusted, arbitrary code on 
our cluster in near real time.

Would you like to compile and run C code from random

people on the Internet on your servers?



FROM redis

FROM ubuntu:latest

FROM jane’s-image



Security Assumptions

• Run arbitrary binaries

• Instructor grading scripts may have vulnerabilities
• ∴ Grading code is untrusted

• Unknown vulnerabilities in Docker and Linux 
name-spacing and/or container implementation



Security Goals

Prevent submitted code from:
• impacting the evaluation of other submissions.

• disrupting the grading environment (e.g., DoS)

• affecting the rest of the Coursera learning platform



Grading assignment submissions

CC-by-2.0 https://www.flickr.com/photos/dherholz/4367511580/
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Attacks: Kernel Resource 
Exhaustion

• Open file limits per container 
(nofile)

• nproc Process limits

• Limit kernel memory per cgroup

• Limit execution time
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Attacks: Network attacks

Attacks:

• Bitcoin mining

• DoS attacks on other systems

• Access Amazon S3 and other AWS APIs

Defense:

• Deny network access



Docker Network Modes

NetworkDisabled too restrictive
• Some graders require local loopback
• Feature also deprecated

--net=none + deny net_admin + audit 
network

• Isolation via Docker creating an 
independent network stack for each 
container

github.com/coursera/amazon-ecs-agent

https://github.com/coursera/amazon-ecs-agent


CC-by-2.0 https://www.flickr.com/photos/valentinap/253659858



CC-by-2.0 https://www.flickr.com/photos/jessicafm/2834658255/



CC-by-2.0 https://www.flickr.com/photos/donnieray/11501178306/in/photostream/



Defense in Depth

• Mandatory Access Control (App Armor)
• Allows auditing or denying access to a 

variety of subsystems

• Drop capabilities from bounding set
• No need for NET_BIND_SERVICE, 

CAP_FOWNER, MKNOD

• Deny root within container



Deny Root Escalations

• We modify instructor grader images 

before allowing them to be run

• Clears setuid

• Inserts C wrapper to drop privileges from 

root and redirect stdin/stdout/stderr

• Run cleaning job on another Iguazú

cluster

• Run Docker in Docker!

• Docker 1.10 adds User Namespaces



If all else fails…

• Utilizes VPC security measures to 

further restrict network access

• No public internet access

• Security group to restrict 

inbound/outbound access

• Network flow logs for auditing

• Separate AWS account

• Run in an Auto Scaling group

• Regularly terminate all grading EC2 

instances



Other Security Measures

• Utilize AWS CloudTrail for audit logs

• Third-party security monitoring 

(Threat Stack)
• No one should log in, so any TTY is an alert

• Penetration testing by third-party red 

team (Synack)



Lessons Learned - GrID

• Building a platform for code 
execution is hard!

• Carefully monitor disk usage

• Run the latest kernels
• Latest security patches

• btrfs wedging on older kernels
• Default Ubuntu 14.04 kernel not new 

enough!



Reliable deploy
tooling pays for itself.



Thank you!
Brennan Saeta

github/saeta
@bsaeta

saeta@coursera.org

Frank Chen
github/frankchn

@frankchn
frankchn@coursera.org

GrID lead Iguazú Lead
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