
ECS & Docker:
Secure Async Execution @

Brennan Saeta

The Beginnings — 2012

10
courses

1 million
learners

worldwide

4
partners

Education at Scale

1,800
courses

18 million
learners

worldwide

140
partners

Outline

• Evolution of Coursera’s nearline execution systems

• Next-generation execution framework: Iguazú

• Iguazú application deep dive:
GrID — evaluating programming assignments

Key Takeaways

• What is nearline execution, and why it is useful

• Best practices for running containers in production
in the cloud

• Hardening techniques for securely operating
container infrastructure at scale

A history of
nearline execution

Coursera Architecture (2012)

PHP
Monolith

Early days - Requirements

• Video re-encoding for distribution

• Grade computation for 100,000+ learners

• Pedagogical data exports for courses

Coursera Architecture (2012)

PHP
Monolith

Cascade Architecture

PHP
Monolith

PHP
Monolith

Cascade

Cascade Architecture

PHP
Monolith

PHP
Monolith

Cascade

Queue

Upgrading to Scala
Re-architecting delayed execution for our 2nd generation
learning platform.

Upgrading to the JVM

• Leverage mature Scala & JVM ecosystems for code
sharing

• JVM much more reliable (no memory leaks)

• New job model: scheduled recurring jobs.
• Named: Saturn

Saturn Architecture

Service A

Service B

Service C

C*

Online Serving
Scala/micro-service architecture

C*

Saturn Architecture

Service A

Service B

Service C

C*

Online Serving
Scala/micro-service architecture

Saturn

C*

Saturn Architecture

Service A

Service B

Service C

C*

Saturn

C*

ZK
Ensemble

Saturn Architecture

Saturn
Leader ZK

Ensemble

Service A

Service B

Service C

C*C*

Problems with Saturn

• Single master meant naïve implementation ran all
jobs in same JVM
• Huge CPU contention @ top of the hour

• OOM Exceptions & GC issues

Enter: Docker

Containers allow for resource isolation!

CC-by-2.0 https://www.flickr.com/photos/photohome_uk/1494590209

Supported Features

Platform

Saturn Docker
Amazon

ECS
Iguazú

Run code ✅ ✅ ✅ ✅

Resource
Isolation ❌ ✅ ✅ ✅

Clusters /
HA ☑️ ❌ ✅ ✅

Great
developer
workflow

✅ ❌ ❌ ✅

Scheduled
Jobs ✅ ❌ ❌ ✅

Supported Features

Platform

Saturn Docker
Amazon

ECS
Iguazú

Run code ✅ ✅ ✅ ✅

Resource
Isolation ❌ ✅ ✅ ✅

Clusters /
HA ✅ ❌ ✅ ✅

Great
developer
workflow

✅ ❌ ❌ ✅

Scheduled
Jobs ✅ ❌ ❌ ✅

Supported Features

Platform

Saturn Docker
Amazon

ECS
Iguazú

Run code ✅ ✅ ✅ ✅

Resource
Isolation ❌ ✅ ✅ ✅

Clusters /
HA ✅ ❌ ✅ ✅

Great
developer
workflow

✅ ❌ ❌ ✅

Scheduled
Jobs ✅ ❌ ❌ ✅

Supported Features

Platform

Saturn Docker
Amazon

ECS
Iguazú

Run code ✅ ✅ ✅ ✅

Resource
Isolation ❌ ✅ ✅ ✅

Clusters /
HA ✅ ❌ ✅ ✅

Great
developer
workflow

✅ ❌ ❌ ✅

Scheduled
Jobs ✅ ❌ ❌ ✅

Supported Features

Platform

Saturn Docker
Amazon

ECS
???

Run code ✅ ✅ ✅ ✅

Resource
Isolation ❌ ✅ ✅ ✅

Clusters /
HA ✅ ❌ ✅ ✅

Great
developer
workflow

✅ ❌ ❌ ✅

Scheduled
Jobs ✅ ❌ ❌ ✅

Solution: Iguazú

Marissa Strniste (https://www.flickr.com/photos/mstrniste/5999464924) CC-BY-2.0

Solution: Iguazú

• Framework & service for
asynchronous execution
• Optimized Scala developer

experience for Coursera

• Unified scheduler supports:
• Immediate execution (nearline)

• Scheduled recurring execution
(cron-like)

• Deferred execution (run once @
time X)

Marissa Strniste (https://www.flickr.com/photos/mstrniste/5999464924) CC-BY-2.0

Iguazú Architecture

Iguazú
Frontend

Iguazú
Scheduler

Iguazú
Backend

CassandraServices Services

Iguazú
Admin

Iguazú
Workers

SQS

ECS API

Devs

Users

Iguazú Architecture

Iguazú
Frontend

Iguazú
Scheduler

Iguazú
Backend

CassandraServices Services

Iguazú
Admin

Iguazú
Workers

SQS
Queue

ECS API

Devs

Users

Iguazú Architecture

Iguazú
Frontend

Iguazú
Scheduler

Iguazú
Backend

CassandraServices Services

Iguazú
Admin

Iguazú
Workers

ECS API

Devs

Users

SQS
Queue

Iguazú Architecture

Iguazú
Frontend

Iguazú
Scheduler

Iguazú
Backend

CassandraServices Services

Iguazú
Admin

Iguazú
Workers

ECS API

Devs

Users

ZK Ensemble

SQS
Queue

Iguazú Architecture

Iguazú
Frontend

Iguazú
Scheduler

Iguazú
Backend

CassandraServices Services

Iguazú
Admin

Iguazú
Workers

ECS API

Devs

Users

ZK Ensemble

SQS
Queue

Autoscale, autoscale,
autoscale!

Autoscaling⇄ Iguazú⇆ ECS

Iguazu
ECS APIAutoscaling

EC2
Worker

EC2
Worker

Shutdown
Lifecycle

Notification Poll Worker
Job Status

All finished
Proceed

Term-
inate EC2

Worker

Failure in Nearline Systems

• Most jobs are non-idempotent

• Iguazú: At most once execution
• Time-bounded delay

• Future: At least once execution
• With caveats

Iguazú adoption by the numbers

~100 jobs in
production

>1000 runs
per day

>100 different job
schedules

Iguazú Applications

Nearline Jobs

• Pedagogical Instructor
Data Exports

• System Integrations
• Course Migrations

Scheduled Recurring Jobs

• Course Reminders
• System Integrations

• Payment reconciliation
• Course translations

• Housekeeping
• Build artifact archival
• A/B Experiments

While containers may help you
on your journey, they are not
themselves a destination.

CC-by-2.0 https://www.flickr.com/photos/usoceangov/5369581593

Writing an Iguazu Job

class AbReminderJob @Inject() (abClient: AbClient, email: EmailAPI)

extends AbstractJob {

override val reservedCpu = 1024 // 1 CPU core

override val reservedMemory = 1024 // 1 GB RAM

def run(parameters: JsValue) = {

val experiments = abClient.findForgotten()

logger.info(s"Found ${experiments.size} forgotten experiments.")

experiments.foreach { experiment =>

sendReminder(experiment.owners, experiment.description)

}

}

}

Writing an Iguazu Job

class AbReminderJob @Inject() (abClient: AbClient, email: EmailAPI)

extends AbstractJob {

override val reservedCpu = 1024 // 1 CPU core

override val reservedMemory = 1024 // 1 GB RAM

def run(parameters: JsValue) = {

val experiments = abClient.findForgotten()

logger.info(s"Found ${experiments.size} forgotten experiments.")

experiments.foreach { experiment =>

sendReminder(experiment.owners, experiment.description)

}

}

}

Writing an Iguazu Job

class AbReminderJob @Inject() (abClient: AbClient, email: EmailAPI)

extends AbstractJob {

override val reservedCpu = 1024 // 1 CPU core

override val reservedMemory = 1024 // 1 GB RAM

def run(parameters: JsValue) = {

val experiments = abClient.findForgotten()

logger.info(s"Found ${experiments.size} forgotten experiments.")

experiments.foreach { experiment =>

sendReminder(experiment.owners, experiment.description)

}

}

}

Writing an Iguazu Job

class AbReminderJob @Inject() (abClient: AbClient, email: EmailAPI)

extends AbstractJob {

override val reservedCpu = 1024 // 1 CPU core

override val reservedMemory = 1024 // 1 GB RAM

def run(parameters: JsValue) = {

val experiments = abClient.findForgotten()

logger.info(s"Found ${experiments.size} forgotten experiments.")

experiments.foreach { experiment =>

sendReminder(experiment.owners, experiment.description)

}

}

}

Writing an Iguazu Job

class AbReminderJob @Inject() (abClient: AbClient, email: EmailAPI)

extends AbstractJob {

override val reservedCpu = 1024 // 1 CPU core

override val reservedMemory = 1024 // 1 GB RAM

def run(parameters: JsValue) = {

val experiments = abClient.findForgotten()

logger.info(s"Found ${experiments.size} forgotten experiments.")

experiments.foreach { experiment =>

sendReminder(experiment.owners, experiment.description)

}

}

}

Testing an Iguazu job

The Hollywood Principle
applies to distributed
systems.

CC-by-2.0 https://www.flickr.com/photos/raindog808/354080327

Deploying a new Iguazu Job

• Developer
• merge into master… done

• Jenkins Build Steps
• Compile & package job JAR

• Prepare Docker image

• Pushes image into registry

• Register updated job with
Amazon ECS API

Invoking an Iguazú Job

// invoking a job with one function call

// from another service via REST framework RPC

val invocationId = iguazuJobInvocationClient

.create(IguazuJobInvocationRequest(

jobName = "exportQuizGrades",

parameters = quizParams))

A clean
environment

increases reliability.
CC-by-2.0 https://www.flickr.com/photos/raindog808/354080327

Evaluating Programming
Assignments
An application of Iguazú

Design Goals

Elastic
Infrastructure

No
Maintenance

Near Real-time Secure
Infrastructure

Design Goals

Elastic
Infrastructure

No
Maintenance

Near Real-time Secure
Infrastructure

Design Goals

Elastic
Infrastructure

No
Maintenance

Near Real-time Secure
Infrastructure

Solution: GrID

Patrick Hoesly (https://www.flickr.com/photos/zooboing/5665221326/) CC-BY-2.0

• Service + framework for grading
programming assignments

• Builds on Iguazú

• Named for Tron’s “digital frontier”
• Backronym: Grading Inside Docker

High-level GrID Architecture

Learners

GrID

Iguazú

S3 Bucket

ECS APIs

Grading MachinesVPC Firewalls

Coursera Production Account Coursera GrID Grading Account

High-level GrID Architecture

Learners

GrID

Iguazú

S3 Bucket

ECS APIs

Grading MachinesVPC Firewalls

Coursera Production Account Coursera GrID Grading Account

High-level GrID Architecture

Learners

GrID

Iguazú

S3 Bucket

ECS API

Grading MachinesVPC Firewalls

Production Acct GrID Grading Account

High-level GrID Architecture

Learners

GrID

Iguazú

S3 Bucket

ECS API

Grading
Machines

VPC
Firewalls

Production Acct GrID Grading Account

Design Goals

Elastic
Infrastructure

No
Maintenance

Near Real-time Secure
Infrastructure

Programming Assignments

The Security Challenge

Compiling and running untrusted, arbitrary code on
our cluster in near real time.

Would you like to compile and run C code from random

people on the Internet on your servers?

FROM redis

FROM ubuntu:latest

FROM jane’s-image

Security Assumptions

• Run arbitrary binaries

• Instructor grading scripts may have vulnerabilities
• ∴ Grading code is untrusted

• Unknown vulnerabilities in Docker and Linux
name-spacing and/or container implementation

Security Goals

Prevent submitted code from:
• impacting the evaluation of other submissions.

• disrupting the grading environment (e.g., DoS)

• affecting the rest of the Coursera learning platform

Grading assignment submissions

CC-by-2.0 https://www.flickr.com/photos/dherholz/4367511580/

CPU CPU CPU CPU

RAM

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel

Disk

CPU CPU CPU CPU

RAM

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel

Disk

CPU cgroups CPU cgroups

RAM — cgroups

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel

Disk

CPU cgroups CPU cgroups

RAM — cgroups

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel

Disk

CPU cgroups CPU cgroups

RAM — cgroups

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel

Disk — blkio limits & btrfs quotas

CPU cgroups CPU cgroups

RAM — cgroups

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel

Disk — blkio limits & btrfs quotas

Attacks: Kernel Resource
Exhaustion

• Open file limits per container
(nofile)

• nproc Process limits

• Limit kernel memory per cgroup

• Limit execution time

CPU cgroups CPU cgroups

RAM — cgroups

Alice’s Container

Alice’s
Submission

Grader

Bob’s Container

Bob’s
Submission

Grader

Mallory’s
Container

Mallory’s
Submission

Grader

Kernel — cgroups, ulimits

Disk — blkio limits & btrfs quotas Network

Attacks: Network attacks

Attacks:

• Bitcoin mining

• DoS attacks on other systems

• Access Amazon S3 and other AWS APIs

Defense:

• Deny network access

Docker Network Modes

NetworkDisabled too restrictive
• Some graders require local loopback
• Feature also deprecated

--net=none + deny net_admin + audit
network

• Isolation via Docker creating an
independent network stack for each
container

github.com/coursera/amazon-ecs-agent

https://github.com/coursera/amazon-ecs-agent

CC-by-2.0 https://www.flickr.com/photos/valentinap/253659858

CC-by-2.0 https://www.flickr.com/photos/jessicafm/2834658255/

CC-by-2.0 https://www.flickr.com/photos/donnieray/11501178306/in/photostream/

Defense in Depth

• Mandatory Access Control (App Armor)
• Allows auditing or denying access to a

variety of subsystems

• Drop capabilities from bounding set
• No need for NET_BIND_SERVICE,

CAP_FOWNER, MKNOD

• Deny root within container

Deny Root Escalations

• We modify instructor grader images

before allowing them to be run

• Clears setuid

• Inserts C wrapper to drop privileges from

root and redirect stdin/stdout/stderr

• Run cleaning job on another Iguazú

cluster

• Run Docker in Docker!

• Docker 1.10 adds User Namespaces

If all else fails…

• Utilizes VPC security measures to

further restrict network access

• No public internet access

• Security group to restrict

inbound/outbound access

• Network flow logs for auditing

• Separate AWS account

• Run in an Auto Scaling group

• Regularly terminate all grading EC2

instances

Other Security Measures

• Utilize AWS CloudTrail for audit logs

• Third-party security monitoring

(Threat Stack)
• No one should log in, so any TTY is an alert

• Penetration testing by third-party red

team (Synack)

Lessons Learned - GrID

• Building a platform for code
execution is hard!

• Carefully monitor disk usage

• Run the latest kernels
• Latest security patches

• btrfs wedging on older kernels
• Default Ubuntu 14.04 kernel not new

enough!

Reliable deploy
tooling pays for itself.

Thank you!
Brennan Saeta

github/saeta
@bsaeta

saeta@coursera.org

Frank Chen
github/frankchn

@frankchn
frankchn@coursera.org

GrID lead Iguazú Lead

Questions?
Brennan Saeta

github/saeta
@bsaeta

saeta@coursera.org

Frank Chen
github/frankchn

@frankchn
frankchn@coursera.org

GrID lead Iguazú Lead

