
Dave Farley
http://www.davefarley.net
@davefarley77

http://www.continuous-delivery.co.uk

Acceptance Testing for
Continuous Delivery

http://www.continuous-delivery.co.uk

http://www.davefarley.net

The Role of Acceptance Testing

Local Dev. Env.

Source
Repository

The Role of Acceptance Testing

Artifact
Repository

Local Dev. Env.

Deployment Pipeline
Commit

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Production

Source
Repository

Acceptance

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Manual Test Env.

Deployment
App.

The Role of Acceptance Testing

Artifact
Repository

Local Dev. Env.

Deployment Pipeline
Commit

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Production

Source
Repository

Acceptance

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Manual Test Env.

Deployment
App.

Staging Env.

Deployment
App.

Manual Test Env.

Deployment
App.

Component
Performance

System
Performance

Acceptance

The Role of Acceptance Testing

Artifact
Repository

Local Dev. Env.

Deployment Pipeline
Commit

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Production

Source
Repository

Acceptance

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Manual Test Env.

Deployment
App.

Staging Env.

Deployment
App.

Manual Test Env.

Deployment
App.

Component
Performance

System
Performance

Acceptance

What is Acceptance Testing?
• Asserts that the code does what the users want.

• An automated “definition of done”

• Asserts that the code works in a “production-like” test
environment.

• A test of the deployment and configuration of a whole
system.

• Provides timely feedback on stories - closes a feedback
loop.

• Acceptance Testing, ATDD, BDD, Specification by
Example, Executable Specifications.

What is Acceptance Testing?

A Good Acceptance Test is:

An Executable Specification of
the Behaviour of the System

What is Acceptance Testing?

Unit Test CodeIdea Executable
spec. Build Release

What is Acceptance Testing?

Unit Test CodeIdea Executable
spec. Build Release

What is Acceptance Testing?

Unit Test CodeIdea Executable
spec. Build Release

So What’s So Hard?
• Tests break when the SUT changes (Particularly UI)

• Tests are complex to develop

• This is a problem of design, the tests are too tightly-
coupled to the SUT!

• The history is littered with poor implementations:

• UI Record-and-playback Systems

• Record-and-playback of production data

• Dumps of production data to test systems

• Nasty automated testing products.

So What’s So Hard?
• Tests break when the SUT changes (Particularly UI)

• Tests are complex to develop

• This is a problem of design, the tests are too tightly-
coupled to the SUT!

• The history is littered with poor implementations:

• UI Record-and-playback Systems

• Record-and-playback of production data

• Dumps of production data to test systems

• Nasty automated testing products.

Anti-Pattern!
Anti-Pattern!
Anti-Pattern!
Anti-Pattern!

Who Owns the Tests?

• Anyone can write a test

• Developers are the people that will break tests

• Therefore Developers own the responsibility to
keep them working

• Separate Testing/QA team owning automated
tests

Who Owns the Tests?

• Anyone can write a test

• Developers are the people that will break tests

• Therefore Developers own the responsibility to
keep them working

• Separate Testing/QA team owning automated
tests Anti-Pattern!

Who Owns the Tests?

Developers Own
Acceptance Tests!

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”

API Traders Clearing
Destination

Other
external

end-points
Market
Makers

UI
Traders

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Public API FIX API
Trade

Reporting
Gateway

…FIX API

“What” not “How”

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”

API Traders Clearing
Destination

Other
external

end-points
Market
Makers

UI
Traders

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”

FIX API

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

API External
StubsFIX-APIUI FIX-APIFIX-API

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”

FIX API

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

API External
StubsFIX-APIUI FIX-API

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”
Test

Case
Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case Test

Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

Test
Case

API External
StubsFIX-APIUI FIX-API

Public API FIX API
Trade

Reporting
Gateway

…

“What” not “How”

API External
StubsFIX-APIUI FIX-API

Test infrastructure common to all acceptance tests

“What” not “How” - Separate Deployment from Testing

• Every Test should control its start conditions,
and so should start and init the app.

• Acceptance Test deployment should be a
rehearsal for Production Release

• This separation of concerns provides an
opportunity for optimisation

• Parallel tests in a shared environment

• Lower test start-up overhead

“What” not “How” - Separate Deployment from Testing

• Every Test should control its start conditions,
and so should start and init the app.

• Acceptance Test deployment should be a
rehearsal for Production Release

• This separation of concerns provides an
opportunity for optimisation

• Parallel tests in a shared environment

• Lower test start-up overhead

Anti-Pattern!

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Test Isolation
• Any form of testing is about evaluating

something in controlled circumstances

• Isolation works on multiple levels

• Isolating the System under test

• Isolating test cases from each other

• Isolating test cases from themselves (temporal isolation)

• Isolation is a vital part of your Test Strategy

Test Isolation - Isolating the System Under Test

Test Isolation - Isolating the System Under Test

External System
‘A’

External System
‘C’

System Under Test
‘B’

Test Isolation - Isolating the System Under Test

External System
‘A’

External System
‘C’

System Under Test
‘B’

Test Isolation - Isolating the System Under Test

External System
‘A’

External System
‘C’

System Under Test
‘B’

Test Isolation - Isolating the System Under Test

External System
‘A’

External System
‘C’

System Under Test
‘B’?

Test Isolation - Isolating the System Under Test

External System
‘A’

External System
‘C’

System Under Test
‘B’Anti-Pattern!

Test Isolation - Isolating the System Under Test

System Under Test
‘B’Test Cases Verifiable

Output

Test Isolation - Validating The Interfaces

Test Isolation - Validating The Interfaces

External System
‘A’

External System
‘C’

System Under Test
‘B’

Test Isolation - Validating The Interfaces

External System
‘A’

External System
‘C’

System Under Test
‘B’

Test Isolation - Validating The Interfaces

External System
‘A’

External System
‘C’

Test Cases Verifiable
Output

System Under Test
‘B’

Test Cases Verifiable
Output

Test Cases Verifiable
Output

Test Isolation - Validating The Interfaces

External System
‘A’

External System
‘C’

Test Cases Verifiable
Output

System Under Test
‘B’

Test Cases Verifiable
Output

Test Cases Verifiable
Output

Test Isolation - Isolating Test Cases
• Assuming multi-user systems…

• Tests should be efficient - We want to run LOTS!

• What we really want is to deploy once, and run LOTS of tests

• So we must avoid ANY dependencies between tests…

• Use natural functional isolation e.g.

• If testing Amazon, create a new account and a new book/product for every test-
case

• If testing eBay create a new account and a new auction for every test-case

• If testing GitHub, create a new account and a new repository for every test-case

• …

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

Continuous Delivery

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

Continuous Delivery

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

Continuous Delivery1234

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

Continuous Delivery1234
Continuous Delivery6789

• We want repeatable results

• If I run my test-case twice it should work both
times

Test Isolation - Temporal Isolation

 def test_should_place_an_order(self):
self.store.createBook(“Continuous Delivery”);

 order = self.store.placeOrder(book=“Continuous Delivery")

 self.store.assertOrderPlaced(order)

Continuous Delivery1234
Continuous Delivery6789

• Alias your functional isolation entities

• In your test case create account ‘Dave’ in reality, in the test
infrastructure, ask the application to create account
‘Dave2938472398472’ and alias it to ‘Dave’ in your test
infrastructure.

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Repeatability - Test Doubles

External System

Repeatability - Test Doubles

External System

Local Interface
to External System

Repeatability - Test Doubles

External System

Local Interface
to External System

Communications
to External System

Repeatability - Test Doubles

External System

Local Interface
to External System

Communications
to External System

TestStub
Simulating External

System

Local Interface
to External System

Repeatability - Test Doubles

External System

Local Interface
to External System

Communications
to External System

TestStub
Simulating External

System

Local Interface
to External System

Productio
n

Test
Enviro

nment

kjhaskjhdkjhkjh askjhl lkjasl dkjas lkajl ajsd
lkjalskjlakjsdlkajsld j
lkajsdlkajsldkj

lkjlakjsldkjlka laskj ljl akjl kajsldijupoqwiuepoq dlkjl iu
lkajsodiuqpwouoi la
]laksjdiuqoiwuoijds

oijasodiaosidjuoiasud

kjhaskjhdkjhkjh askjhl lkjasl dkjas lkajl ajsd
lkjalskjlakjsdlkajsld j
lkajsdlkajsldkj

lkjlakjsldkjlka laskj ljl akjl kajsldijupoqwiuepoq dlkjl iu
lkajsodiuqpwouoi la
]laksjdiuqoiwuoijds

oijasodiaosidjuoiasud

Config
uratio

n

Test Doubles As Part of Test Infrastructure

TestStub
Simulating External

System

Local Interface
to External System

Test Doubles As Part of Test Infrastructure

TestStub
Simulating External

System

Local Interface
to External System

Test Doubles As Part of Test Infrastructure

TestStub
Simulating External

System

Local Interface
to External System

Public Interface

Test Doubles As Part of Test Infrastructure

TestStub
Simulating External

System

Local Interface
to External System

Public Interface

Test Doubles As Part of Test Infrastructure

TestStub
Simulating External

System

Local Interface
to External System

Test Infrastructure

Test
Case

Test
Case

Test
Case

Test
Case

Test Infrastructure
Back-Channel

Public Interface
System Under Test

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Language of the Problem Domain - DSL

• A Simple ‘DSL’ Solves many of our problems
• Ease of TestCase creation
• Readability
• Ease of Maintenance
• Separation of “What” from “How”
• Test Isolation
• The Chance to abstract complex set-up and scenarios
• …

Language of the Problem Domain - DSL
 @Test
 public void shouldSupportPlacingValidBuyAndSellLimitOrders()
 {
 trading.selectDealTicket("instrument");
 trading.dealTicket.placeOrder("type: limit", ”bid: 4@10”);
 trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
 trading.dealTicket.dismissFeedbackMessage();

 trading.dealTicket.placeOrder("type: limit", ”ask: 4@9”);
 trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to sell 4.00 contracts at 9.0");
 }

Language of the Problem Domain - DSL
 @Test
 public void shouldSupportPlacingValidBuyAndSellLimitOrders()
 {
 trading.selectDealTicket("instrument");
 trading.dealTicket.placeOrder("type: limit", ”bid: 4@10”);
 trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
 trading.dealTicket.dismissFeedbackMessage();

 trading.dealTicket.placeOrder("type: limit", ”ask: 4@9”);
 trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to sell 4.00 contracts at 9.0");
 }

 @Test
 public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder()
 {
 fixAPIMarketMaker.placeMassOrder("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

 fixAPI.placeOrder("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
 fixAPI.waitForExecutionReport("executionType: Fill", "orderStatus: Filled",
 "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
 "executionPrice: 50", "executionQuantity: 4");
 }

Language of the Problem Domain - DSL
 @Test
 public void shouldSupportPlacingValidBuyAndSellLimitOrders()
 {
 trading.selectDealTicket("instrument");
 trading.dealTicket.placeOrder("type: limit", ”bid: 4@10”);
 trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
 trading.dealTicket.dismissFeedbackMessage();

 trading.dealTicket.placeOrder("type: limit", ”ask: 4@9”);
 trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to sell 4.00 contracts at 9.0");
 }

 @Test
 public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder()
 {
 fixAPIMarketMaker.placeMassOrder("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

 fixAPI.placeOrder("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
 fixAPI.waitForExecutionReport("executionType: Fill", "orderStatus: Filled",
 "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
 "executionPrice: 50", "executionQuantity: 4");
 }

 @Before
 public void beforeEveryTest()
 {
 adminAPI.createInstrument("name: instrument");
 registrationAPI.createUser("user");
 registrationAPI.createUser("marketMaker", "accountType: MARKET_MAKER");
 tradingUI.loginAsLive("user");
 }

Language of the Problem Domain - DSL
 public void placeOrder(final String... args)
 {
 final DslParams params =
 new DslParams(args,
 new OptionalParam("type").setDefault("Limit").setAllowedValues("limit", "market", "StopMarket"),
 new OptionalParam("side").setDefault("Buy").setAllowedValues("buy", "sell"),
 new OptionalParam("price"),
 new OptionalParam("triggerPrice"),
 new OptionalParam("quantity"),
 new OptionalParam("stopProfitOffset"),
 new OptionalParam("stopLossOffset"),
 new OptionalParam("confirmFeedback").setDefault("true"));

 getDealTicketPageDriver().placeOrder(params.value("type"),
 params.value("side"),
 params.value("price"),
 params.value("triggerPrice"),
 params.value("quantity"),
 params.value("stopProfitOffset"),
 params.value("stopLossOffset"));

 if (params.valueAsBoolean("confirmFeedback"))
 {
 getDealTicketPageDriver().clickOrderFeedbackConfirmationButton();
 }

 LOGGER.debug("placeOrder(" + Arrays.deepToString(args) + ")");
 }

Language of the Problem Domain - DSL
 @Test
 public void shouldSupportPlacingValidBuyAndSellLimitOrders()
 {
 tradingUI.showDealTicket("instrument");
 tradingUI.dealTicket.placeOrder("type: limit", ”bid: 4@10”);
 tradingUI.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
 tradingUI.dealTicket.dismissFeedbackMessage();

 tradingUI.dealTicket.placeOrder("type: limit", ”ask: 4@9”);
 tradingUI.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to sell 4.00 contracts at 9.0");
 }

 @Test
 public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder()
 {
 fixAPIMarketMaker.placeMassOrder("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

 fixAPI.placeOrder("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
 fixAPI.waitForExecutionReport("executionType: Fill", "orderStatus: Filled",
 "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
 "executionPrice: 50", "executionQuantity: 4");
 }

Language of the Problem Domain - DSL
 @Test
 public void shouldSupportPlacingValidBuyAndSellLimitOrders()
 {
 tradingUI.showDealTicket("instrument");
 tradingUI.dealTicket.placeOrder("type: limit", ”bid: 4@10”);
 tradingUI.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
 tradingUI.dealTicket.dismissFeedbackMessage();

 tradingUI.dealTicket.placeOrder("type: limit", ”ask: 4@9”);
 tradingUI.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to sell 4.00 contracts at 9.0");
 }

 @Test
 public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder()
 {
 fixAPIMarketMaker.placeMassOrder("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

 fixAPI.placeOrder("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
 fixAPI.waitForExecutionReport("executionType: Fill", "orderStatus: Filled",
 "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
 "executionPrice: 50", "executionQuantity: 4");
 }

Language of the Problem Domain - DSL

@Channel(fixApi, dealTicket, publicApi)
@Test
 public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder()
 {
 trading.placeOrder("instrument", "side: buy", “price: 123.45”, "quantity: 4", "goodUntil: Immediate”);

 trading.waitForExecutionReport("executionType: Fill", "orderStatus: Filled",
 "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
 "executionPrice: 123.45", "executionQuantity: 4");
 }

Language of the Problem Domain - DSL

@Channel(fixApi, dealTicket, publicApi)
@Test
 public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder()
 {
 trading.placeOrder("instrument", "side: buy", “price: 123.45”, "quantity: 4", "goodUntil: Immediate”);

 trading.waitForExecutionReport("executionType: Fill", "orderStatus: Filled",
 "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
 "executionPrice: 123.45", "executionQuantity: 4");
 }

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Testing with Time

• Test Cases should be deterministic

• Time is a problem for determinism - There are
two options:

• Ignore time

• Control time

Testing With Time - Ignore Time
Mechanism

Filter out time-based values in your test
infrastructure so that they are ignored

Pros:
• Simple!

Cons:
• Can miss errors
• Prevents any hope of testing complex time-based

scenarios

Mechanism

Treat Time as an external dependency, like any
external system - and Fake it!

Pros:
• Very Flexible!
• Can simulate any time-based scenario, with time under the

control of the test case.

Cons:
• Slightly more complex infrastructure

Testing With Time - Controlling Time

Testing With Time - Controlling Time

@Test
 public void shouldBeOverdueAfterOneMonth()
 {

 book = library.borrowBook(“Continuous Delivery”);
 assertFalse(book.isOverdue());

 time.travel(“+1 week”);
 assertFalse(book.isOverdue());

 time.travel(“+4 weeks”);
 assertTrue(book.isOverdue());

 }

Testing With Time - Controlling Time

@Test
 public void shouldBeOverdueAfterOneMonth()
 {

 book = library.borrowBook(“Continuous Delivery”);
 assertFalse(book.isOverdue());

 time.travel(“+1 week”);
 assertFalse(book.isOverdue());

 time.travel(“+4 weeks”);
 assertTrue(book.isOverdue());

 }

Testing With Time - Controlling Time

Testing With Time - Controlling Time

Test Infrastructure

Test
Case

Test
Case

Test
Case

Test
Case

System Under Test

 public void someTimeDependentMethod()
 {

 time = System.getTime();
 }

System Under Test

Testing With Time - Controlling Time

Test Infrastructure

Test
Case

Test
Case

Test
Case

Test
Case

System Under Test

 include Clock;

 public void someTimeDependentMethod()
 {

 time = Clock.getTime();
 }

System Under Test

Testing With Time - Controlling Time

Test Infrastructure

Test
Case

Test
Case

Test
Case

Test
Case

System Under Test include Clock;

 public void someTimeDependentMethod()
 {

 time = Clock.getTime();
 }

 public class Clock {
 public static clock = new SystemClock();

 public static void setTime(long newTime) {
 clock.setTime(newTime);
 }

 public static long getTime() {
 return clock.getTime();
 } System Under Test

Testing With Time - Controlling Time

Test Infrastructure

Test
Case

Test
Case

Test
Case

Test
Case

System Under Test include Clock;

 public void someTimeDependentMethod()
 {

 time = Clock.getTime();
 }

public void onInit() {
// Remote Call - back-channel
 systemUnderTest.setClock(new TestClock());
}
public void time-travel(String time) {
 long newTime = parseTime(time);
// Remote Call - back-channel
 systemUnderTest.setTime(newTime);
}

Test Infrastructure
Back-Channel

 public class Clock {
 public static clock = new SystemClock();

 public static void setTime(long newTime) {
 clock.setTime(newTime);
 }

 public static long getTime() {
 return clock.getTime();
 } System Under Test

Test Environment Types
• Some Tests need special treatment.

• Tag Tests with properties and allocate them
dynamically:

Test Environment Types
• Some Tests need special treatment.

• Tag Tests with properties and allocate them
dynamically:

@TimeTravel
@Test
public void shouldDoSomethingThatNeedsFakeTime()
…

@Destructive
@Test
public void shouldDoSomethingThatKillsPartOfTheSystem()
…

@FPGA(version=1.3)
@Test
public void shouldDoSomethingThatRequiresSpecificHardware()
…

Test Environment Types
• Some Tests need special treatment.

• Tag Tests with properties and allocate them
dynamically:

@TimeTravel
@Test
public void shouldDoSomethingThatNeedsFakeTime()
…

@Destructive
@Test
public void shouldDoSomethingThatKillsPartOfTheSystem()
…

@FPGA(version=1.3)
@Test
public void shouldDoSomethingThatRequiresSpecificHardware()
…

Test Environment Types

Test Environment Types

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Properties of Good Acceptance Tests
• “What” not “How”

• Isolated from other tests

• Repeatable

• Uses the language of the problem domain

• Tests ANY change

• Efficient

Production-like Test Environments

Production-like Test Environments

Production-like Test Environments

Production-like Test Environments

Production-like Test Environments

Production-like Test Environments

Production-like Test Environments

Make Test Cases Internally Synchronous

Make Test Cases Internally Synchronous

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

Make Test Cases Internally Synchronous

Example DSL level Implementation…

 public String placeOrder(String params…)
 {

 orderSent = sendAsyncPlaceOrderMessage(parseOrderParams(params));
 return waitForOrderConfirmedOrFailOnTimeOut(orderSent);
 }

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

Make Test Cases Internally Synchronous

Example DSL level Implementation…

 public String placeOrder(String params…)
 {

 orderSent = sendAsyncPlaceOrderMessage(parseOrderParams(params));
 return waitForOrderConfirmedOrFailOnTimeOut(orderSent);
 }

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

Make Test Cases Internally Synchronous

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

• If you really have to, implement a  
“poll-and-timeout” mechanism in your test-
infrastructure

• Never, Never, Never, put a “wait(xx)” and expect
your tests to be (a) Reliable or (b) Efficient!

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

Make Test Cases Internally Synchronous

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

• If you really have to, implement a  
“poll-and-timeout” mechanism in your test-
infrastructure

• Never, Never, Never, put a “wait(xx)” and expect
your tests to be (a) Reliable or (b) Efficient!

• Look for a “Concluding Event” listen for that in
your DSL to report an async call as complete

Anti-Pattern!

Scaling-Up

Artifact
Repository

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Scaling-Up

Artifact
Repository

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Deployment Pipeline
Commit

Manual Test Env.

Deployment
App.

Artifact
Repository

Acceptance Acceptance Test
Environment

Scaling-Up

Artifact
Repository

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Deployment Pipeline
Commit

Manual Test Env.

Deployment
App.

Artifact
Repository

Acceptance Acceptance Test
Environment

AA

Scaling-Up

Artifact
Repository

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Deployment Pipeline
Commit

Manual Test Env.

Deployment
App.

Artifact
Repository

Acceptance Acceptance Test
EnvironmentA

A

Scaling-Up

Artifact
Repository

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Deployment Pipeline
Commit

Manual Test Env.

Deployment
App.

Artifact
Repository

Acceptance Acceptance Test
Environment

Test Host
Test Host

Test Host

Test Host

Test Host

A

A

Scaling-Up

Artifact
Repository

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Staging Env.

Deployment
App.

Production Env.

Deployment
App.

Source
Repository

Manual Test Env.

Deployment
App.

Deployment Pipeline
Commit

Manual Test Env.

Deployment
App.

Artifact
Repository

Acceptance

Acceptance

Acceptance Test
Environment

Test Host
Test Host

Test Host

Test Host

Test Host

AA

Anti-Patterns in Acceptance Testing

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

• Don’t assume Nasty Automated Testing Products(tm) will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

• Don’t assume Nasty Automated Testing Products(tm) will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

• Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

• Don’t assume Nasty Automated Testing Products(tm) will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

• Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

• Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in
your use of test environments.

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

• Don’t assume Nasty Automated Testing Products(tm) will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

• Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

• Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in
your use of test environments.

• Don’t include Systems outside of your control in your Acceptance Test Scope

Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

• Don’t assume Nasty Automated Testing Products(tm) will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

• Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

• Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in
your use of test environments.

• Don’t include Systems outside of your control in your Acceptance Test Scope

• Don’t Put ‘wait()’ instructions in your tests hoping it will solve intermittency

Tricks for Success

Tricks for Success
• Do Ensure That Developers Own the Tests

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

• Do Stub External Systems

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

• Do Stub External Systems

• Do Test in “Production-Like” Environments

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

• Do Stub External Systems

• Do Test in “Production-Like” Environments

• Do Make Instructions Appear Synchronous at the Level of the Test Case

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

• Do Stub External Systems

• Do Test in “Production-Like” Environments

• Do Make Instructions Appear Synchronous at the Level of the Test Case

• Do Test for ANY change

Tricks for Success
• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

• Do Stub External Systems

• Do Test in “Production-Like” Environments

• Do Make Instructions Appear Synchronous at the Level of the Test Case

• Do Test for ANY change

• Do Keep your Tests Efficient

Q&A

http://www.continuous-delivery.co.uk

Dave Farley

http://www.davefarley.net

@davefarley77

http://www.davefarley.net
http://www.davefarley.net

