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What is Acceptance Testing?
• Asserts that the code does what the users want. 

• An automated “definition of done” 

• Asserts that the code works in a “production-like” test 
environment. 

• A test of the deployment and configuration of a whole 
system. 

• Provides timely feedback on  stories - closes a feedback 
loop. 

• Acceptance Testing, ATDD, BDD, Specification by 
Example, Executable Specifications.



What is Acceptance Testing?

A Good Acceptance Test is: 

An Executable Specification of 
the Behaviour of the System
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So What’s So Hard?
• Tests break when the SUT changes (Particularly UI) 

• Tests are complex to develop 

• This is a problem of design, the tests are too tightly-
coupled to the SUT! 

• The history is littered with poor implementations: 

• UI Record-and-playback Systems 

• Record-and-playback of production data 

• Dumps of production data to test systems 

• Nasty automated testing products.
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• Anyone can write a test 

• Developers are the people that will break tests 

• Therefore Developers own the responsibility to 
keep them working 

• Separate Testing/QA team owning automated 
tests
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Who Owns the Tests?

Developers Own  
Acceptance Tests!
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• Isolated from other tests 

• Repeatable 

• Uses the language of the problem domain 
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• Efficient
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“What” not “How” - Separate Deployment from Testing

• Every Test should control its start conditions, 
and so should start and init the app. 

• Acceptance Test deployment should be a 
rehearsal for Production Release 

• This separation of concerns provides an 
opportunity for optimisation 

• Parallel tests in a shared environment 

• Lower test start-up overhead
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Test Isolation
• Any form of testing is about evaluating 

something in controlled circumstances 

• Isolation works on multiple levels 

• Isolating the System under test 

• Isolating test cases from each other 

• Isolating test cases from themselves (temporal isolation) 

• Isolation is a vital part of your Test Strategy
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Test Isolation - Isolating Test Cases
• Assuming multi-user systems… 

• Tests should be efficient - We want to run LOTS! 

• What we really want is to deploy once, and run LOTS of tests 

• So we must avoid ANY dependencies between tests… 

• Use natural functional isolation e.g. 

• If testing Amazon, create a new account and a new book/product for every test-
case 

• If testing eBay create a new account and a new auction for every test-case 

• If testing GitHub, create a new account and a new repository for every test-case 

• …



• We want repeatable results 

• If I run my test-case twice it should work both 
times

Test Isolation - Temporal Isolation
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• We want repeatable results 

• If I run my test-case twice it should work both 
times

Test Isolation - Temporal Isolation

  def test_should_place_an_order(self): 
self.store.createBook(“Continuous Delivery”); 
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      self.store.assertOrderPlaced(order) 
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• We want repeatable results 
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times

Test Isolation - Temporal Isolation

  def test_should_place_an_order(self): 
self.store.createBook(“Continuous Delivery”); 

      order = self.store.placeOrder(book=“Continuous Delivery") 

      self.store.assertOrderPlaced(order) 
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• We want repeatable results 

• If I run my test-case twice it should work both 
times

Test Isolation - Temporal Isolation

  def test_should_place_an_order(self): 
self.store.createBook(“Continuous Delivery”); 

      order = self.store.placeOrder(book=“Continuous Delivery") 

      self.store.assertOrderPlaced(order) 

Continuous Delivery1234
Continuous Delivery6789

• Alias your functional isolation entities 

• In your test case create account ‘Dave’ in reality, in the test 
infrastructure, ask the application to create account 
‘Dave2938472398472’ and alias it to ‘Dave’ in your test 
infrastructure.
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Language of the Problem Domain - DSL

• A Simple ‘DSL’ Solves many of our problems 
• Ease of TestCase creation 
• Readability 
• Ease of Maintenance 
• Separation of “What” from “How” 
• Test Isolation 
• The Chance to abstract complex set-up and scenarios 
• …



Language of the Problem Domain - DSL
 @Test 
    public void shouldSupportPlacingValidBuyAndSellLimitOrders() 
    { 
        trading.selectDealTicket("instrument"); 
        trading.dealTicket.placeOrder("type: limit", ”bid: 4@10”); 
        trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to buy 4.00 contracts at 10.0"); 
        trading.dealTicket.dismissFeedbackMessage(); 

        trading.dealTicket.placeOrder("type: limit", ”ask: 4@9”); 
        trading.dealTicket.checkFeedbackMessage("You have successfully sent a limit order to sell 4.00 contracts at 9.0"); 
    }
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Language of the Problem Domain - DSL
 public void placeOrder(final String... args) 
    { 
        final DslParams params = 
                new DslParams(args, 
                              new OptionalParam("type").setDefault("Limit").setAllowedValues("limit", "market", "StopMarket"), 
                              new OptionalParam("side").setDefault("Buy").setAllowedValues("buy", "sell"), 
                              new OptionalParam("price"), 
                              new OptionalParam("triggerPrice"), 
                              new OptionalParam("quantity"), 
                              new OptionalParam("stopProfitOffset"), 
                              new OptionalParam("stopLossOffset"), 
                              new OptionalParam("confirmFeedback").setDefault("true")); 

        getDealTicketPageDriver().placeOrder(params.value("type"), 
                                             params.value("side"), 
                                             params.value("price"), 
                                             params.value("triggerPrice"), 
                                             params.value("quantity"), 
                                             params.value("stopProfitOffset"), 
                                             params.value("stopLossOffset")); 

        if (params.valueAsBoolean("confirmFeedback")) 
        { 
            getDealTicketPageDriver().clickOrderFeedbackConfirmationButton(); 
        } 

        LOGGER.debug("placeOrder(" + Arrays.deepToString(args) + ")"); 
    }
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Testing with Time

• Test Cases should be deterministic 

• Time is a problem for determinism - There are 
two options: 

• Ignore time 

• Control time



Testing With Time - Ignore Time
Mechanism

Filter out time-based values in your test 
infrastructure so that they are ignored 

Pros:
• Simple! 

Cons:
• Can miss errors 
• Prevents any hope of testing complex time-based 

scenarios



Mechanism

Treat Time as an external dependency, like any 
external system  - and Fake it! 

Pros:
• Very Flexible! 
• Can simulate any time-based scenario, with time under the 

control of the test case. 

Cons:
• Slightly more complex infrastructure

Testing With Time - Controlling Time



Testing With Time - Controlling Time

  
@Test 
    public void shouldBeOverdueAfterOneMonth() 
    { 
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    assertFalse(book.isOverdue()); 

    time.travel(“+1 week”); 
    assertFalse(book.isOverdue()); 

    time.travel(“+4 weeks”); 
    assertTrue(book.isOverdue()); 

   } 
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System Under Test    include Clock; 

   public void someTimeDependentMethod() 
    { 

   time = Clock.getTime(); 
   }

public void onInit() { 
// Remote Call - back-channel 
        systemUnderTest.setClock(new TestClock()); 
} 
public void time-travel(String time) { 
        long newTime = parseTime(time); 
// Remote Call - back-channel 
        systemUnderTest.setTime(newTime); 
}

Test Infrastructure  
Back-Channel

    public class Clock { 
        public static clock = new SystemClock(); 

        public static void setTime(long newTime) { 
             clock.setTime(newTime); 
        } 

        public static long getTime() { 
            return clock.getTime(); 
        }  System Under Test
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Make Test Cases Internally Synchronous

• Look for a “Concluding Event” listen for that in 
your DSL to report an async call as complete 

• If you really have to, implement a  
“poll-and-timeout” mechanism in your test-
infrastructure 

• Never, Never, Never, put a “wait(xx)” and expect 
your tests to be (a) Reliable or (b) Efficient!

• Look for a “Concluding Event” listen for that in 
your DSL to report an async call as complete 

Anti-Pattern!
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Anti-Patterns in Acceptance Testing
• Don’t use UI Record-and-playback Systems

• Don’t Record-and-playback production data. This has a role, but it is NOT 
Acceptance Testing

• Don’t dump production data to your test systems, instead define the absolute 
minimum data that you need

• Don’t assume Nasty Automated Testing Products(tm) will do what you need. Be very 
sceptical about them. Start with YOUR strategy and evaluate tools against that.

• Don’t have a separate Testing/QA team! Quality is down to everyone - Developers 
own Acceptance Tests!!!

• Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in 
your use of test environments.

• Don’t include Systems outside of your control in your Acceptance Test Scope

• Don’t Put ‘wait()’ instructions in your tests hoping it will solve intermittency
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• Do Ensure That Developers Own the Tests

• Do Focus Your Tests on “What” not “How”

• Do Think of Your Tests as “Executable Specifications”

• Do Make Acceptance Testing Part of your “Definition of Done”

• Do Keep Tests Isolated from one-another

• Do Keep Your Tests Repeatable

• Do Use the Language of the Problem Domain - Do try the DSL approach, whatever 
your tech.

• Do Stub External Systems

• Do Test in “Production-Like” Environments

• Do Make Instructions Appear Synchronous at the Level of the Test Case

• Do Test for ANY change

• Do Keep your Tests Efficient



Q&A

http://www.continuous-delivery.co.uk

Dave Farley 

http://www.davefarley.net 

@davefarley77

http://www.davefarley.net
http://www.davefarley.net

