Acceptance Testing for
Continuous Delivery

Dave Farley
http://www.davefarley.net
@davefarley77 i

T Sildiron l«x‘y Sopmarbovse . Sotued

;‘»'7.\- J;ﬁ}
CONTINUOUS
DELIVERY

C o nt i n U 0 U S Davip ra:::.n "ﬂ ..’

http://www.continuous-delivery.co.uk

http://www.davefarley.net

The Role of Acceptance Testing

OOOOO

The Role of Acceptance Testing

Local Dev. Env. Commit

S /
- Source
Repository

Acceptance

Co it
(o tance
Manual Test Env.

I
Deployment '
App. /

Production Env.

—“—

—_— _ Artifact R
' Production Repository Manual
pp. /

P
2
Component

Performance

Deployment '
App. /

c Continuous

The Role of Acceptance Testing

Acceptance

Manual Test Env.

I
Deployment '
App. /

Component
Performance

Deployment '
App. /

System
Performance

_ontinuous

The Role of Acceptance Testing

Deployment Pipeline

What is Acceptance Testing?

Asserts that the code does what the users want.
An automated “definition of done”

Asserts that the code works in a “production-like” test
environment.

A test of the deployment and configuration of a whole
system.

Provides timely feedback on stories - closes a feedback
loop.

Acceptance Testing, ATDD, BDD, Specification by
Example, Executable Specifications.
c Continuous

What is Acceptance Testing?

A Good Acceptance Test is:

An Executable Specification of
the Behaviour of the Sysiem

What is Acceptance Testing”?

What is Acceptance Testing?

Continuous
Delivery Itd

What is Acceptance Testing”?

So What's So Hard?

Tests break when the SUT changes (Particularly Ul)

Tests are complex to develop

This is a problem of design, the tests are too tightly-

coupled to the SUT!

The history Is littered with poor implementations:

Ul Record-and-playback Systems
 Record-and-playback of production data
 Dumps of production data to test systems

e Nasty automated testing products.

c Continuous

So What's So Hard?

e Tests break when the SUT changes (Particularly Ul)
e Jests are complex to develop

* Thisis a problem of design, the tests are too tightly-
coupled to the SUT!

e [he history is littered with poor implementations:

'. -"5-'

- w' \k ~

el 4

. - P - : |
SR TEAE B - Lol "P > ¥ 3 ‘ by
TRV AN P SN VY

Who Owns the Tests?

Anyone can write a test

Developers are the people that will break tests

Therefore

keep themnr

Developers own the responsibility to

working

Separate Testing/QA team owning automated

{ests

c Continuous

Who Owns the Tests?

 Anyone can write a test

* Developers are the people that will break tests

* Therefore Developers own the responsibility to
keep them working

Who Owns the Tests?

Developers Own
Acceptance Tests!

Properties of Good Acceptance Tests

* "What” not "How"

* |solated from other tests

 Repeatable

e Uses the language of the problem domain

e Jests ANY change

e Efficient

c Continuous

Properties of Good Acceptance Tests

* "What” not "How"

 Repeatable

“What” not "How"

“What” not "How"

Case Test Test
Case

Test Test
Case Test
Case
Case
Test J -
Case A
Test y

Case

a1

Public API FIX API Reporting
Gateway

3] 3] 1] 4]

c Continuous

“What” not "How"

Test Test
Case Test Test Case Test Test
Case c Case Case
ase
Test
Case Test
Test Case
es
Test Test
Test Tes Test 4

Case Test
Case Case
Case Case Case Case

// it

Gateway

lI 3] 1] II

c Continuous

“What” not "How”

Test Test
Case Test Test Case Test Test
Case Case Case
Case
Test Ji A
Case <) Test
Test
Test Test

Case
y
Case Test Test Tes

Case
Case Case Case

Test
Case Case A

r
r

4 /2 4

r r

Other
external
end-points

Market Clearing

ARITEaders Makers Destination

Public API FIX API Reporting
Gateway

3] 3] 1] 4]

(Continuous

“What” not "How"

Case

Test Test Test
Case Test Case
Case
Case
Test @

Test
Case Test Test Tes
Case
Case Case

r
y y

External

ul API FIX-API Stubs

i1

|
N

Gateway

3] 3] 1] 4]

c Continuous

“What" not “How”

Case Test Test
Case

es Case C 2
Case moe
Case Case

r

r
g 4
r 4

Test Test

Case Test Test Case Test Test

Case C Case Case

ase
Test] !
o ' - Test
Test - o
‘ Test Test Test
4

External
. AP FIX-API xterna

L}

Public API “ Reporting

Gateway

i1 1t 1t 1

Continuous

“What" not “How”

Case Test Test
Case

es Case C 2
Case moe
Case Case

r r
g 4
r 4

Test Test

Case Test Test Case Test Test

Case C Case Case

ase
Test] !
o ' - Test
Case
Test -
? Test Test Test
4

. External

API FIX-API Stubs
Public API FIX API Reporting
Gateway

i1 1t 1t 1

Continuous

“What” not "How"

‘What” not "How" - Separate Deployment from Testing

 Every lest should control its start conditions,
and so should start and init the app.

 Acceptance lest deployment should be a
rehearsal for Production Release

* This separation of concerns provides an
opportunity for optimisation

e Parallel tests In a shared environment

* [ower test start-up overhead

c Continuous

‘What” not "How" - Separate Deployment from Testing

o EVET ToDEaE alld cOutrolilamads I BRATIONS,
anNd Se-@@Ei s(alrl and 1N readmi

 Acceptance lest deployment should be a
renearsal for Production Release

* This separation of concerns provides an
opportunity for optimisation

e Parallel tests In a shared environment

* [ower test start-up overhead

c Continuous

Properties of Good Acceptance Tests

* "What” not "How"

* |solated from other tests

 Repeatable

e Uses the language of the problem domain

e Jests ANY change

e Efficient

c Continuous

Properties of Good Acceptance Tests

e |solated from other tests

 Repeatable

Jest Isolation

* Any form of testing is about evaluating
something in controlled circumstances

e |solation works on multiple levels

* [solating the System under test
* |solating test cases from each other

* [solating test cases from themselves (temporal isolation)

* [solation is a vital part of your Test Strategy

c Continuous

Test Isolation - Isolating the System Under Test

Test Isolation - Isolating the System Under Test

> - -

Test Isolation - Isolating the System Under Test

= -

Test Isolation - Isolating the System Under Test

Test Isolation - Isolating the System Under Test

Test Isolation - Isolating the System Under Test

Test Isolation - Isolating the System Under Test

== - =

Test Isolation - Validating The Interfaces

Test Isolation - Validating The Interfaces

> - -

Test Isolation - Validating The Interfaces

Test Isolation - Validating The Interfaces

N -

Test Isolation - Validating The Interfaces

Test Isolation - Isolating Test Cases

* Assuming multi-user systems...

* Tests should be efficient - We want to run LOTS!

 What we really want is to deploy once, and run LOTS of tests
 So we must avoid ANY dependencies between tests...

e Use natural functional isolation e.g.

e |f testing Amazon, create a new account and a new book/product for every test-
case

e |f testing eBay create a new account and a new auction for every test-case

e |f testing GitHub, create a new account and a new repository for every test-case

c Continuous

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

def test should place an order (se :
self.store.createBook (“"Continuous Delivervy”) ;

order = self.store.placeOrder (book="Continuous Delivery")

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

def test should place an order (se :
self.store.createBook (“"Continuous Delivervy”) ;

order = self.store.placeOrder (book="Continuous Delivery")

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

def test should place an order (se 3

(: N — .

R \,
self.store.createBook (“Continuous Delivery”); B e . et e dmﬁNMﬂSuﬂWﬂy
o

order = self.store.placeOrder (book="Continuous Delivery")

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

def test should place an order (se 3

(. e ¢ v i
self.store.createBook (“Continuous Delivery”); s ‘*mm“*‘deﬂy
o

order = self.store.placeOrder (book="Continuous Delivery")

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

def test should place an order (se :

self.store.createBook (" % antinuous Deliverv1234

lest Isolation - Temporal Isolation

* \WWe want repeatable results

* |f | run my test-case twice it should work both
times

def test should place an order (self): S artinmane M lar???
self.store.createBook (“"Continuous Delivery”); ~£mm%m5hﬂmmﬁlm4

ontinuous Delivervs789.

order = self.store.placeOrder (book="Continuous Delivery")

self.store.assertOrderPlaced (order)

lest [solation - lemporal Isolation

 \We want repeatable results

e |t | run my test-case twice it should work both
times

def test should place an order (self): : :
self.store.createBook (“"Continuous Delivery”); Continuous DElIVEI’y1234

Continuous Delivery6789

order = self.store.placeOrder (book=%"Continuous Delivery")

self.store.assertOrderPlaced (order)

* Alias your functional isolation entities

* |n your test case create account ‘Dave’ in reality, in the test
infrastructure, ask the application to create account
'Dave29384/723984 72" and alias it to ‘Dave’ in your test

Infrastructure.
c Continuous

Properties of Good Acceptance Tests

* "What” not "How"

* |solated from other tests

 Repeatable

e Uses the language of the problem domain

e Jests ANY change

e Efficient

c Continuous

Properties of Good Acceptance Tests

 Repeatable

Repeatability - Test Doubles

Repeatability - Test Doubles

Repeatability - Test Doubles

\

Communications
to External System

VA

External System

Repeatability - Test Doubles

Communications - TestStub
to External System Simulating External

System

External System

Continuous
Delivery ltd

Repeatability - Test Doubles

5

Test Doubles As Part of Test Infrastructure

s
==

Test Doubles As Part of Test Infrastructure

o

v{}

TestStub

Simulating External (‘7 x.sContinuous
System @ Delivery Itd

Test Doubles As Part of Test Infrastructure

TestStub

Simulating External (‘7 x.sContinuous
System @ Delivery Itd

Test Doubles As Part of Test Infrastructure

TestStub

Simulating External Continuous
System Delivery ltd

Test Doubles As Part of Test Infrastructure

Test Test Test Test
Case Case Case Case

Test Infrastructure

Test Infrastructure
Back-Channel

TestStub

Simulating External Continuous
System Delivery Itd

Properties of Good Acceptance Tests

* "What” not "How"

* |solated from other tests

 Repeatable

e Uses the language of the problem domain

e Jests ANY change

e Efficient

c Continuous

Properties of Good Acceptance Tests

e Repeatable

. anguage of the Problem Domain - DSL

A Simple '‘DSL Solves many of our problems
* Ease of TestCase creation
* Readabillity
* Ease of Maintenance
* Separation of “What” from “How”
* TJest |Isolation
* The Chance to abstract complex set-up and scenarios

c Continuous

. anguage of the Problem Domain - DSL

@QTest

public void shouldSupportPlacingValidBuyAndSellLimitOrders ()

{

trading.
trading.
trading.
trading.

trading.
trading.

selectDealTicket ("instrument") ;

dealTicket.placeOrder ("type: limit",
dealTicket.checkFeedbackMessage ("You
dealTicket.dismissFeedbackMessage() ;

dealTicket.placeOrder ("type: limit",
dealTicket.checkFeedbackMessage ("You

"bid:

have

7”7

have

ask:

4Q107) ;
successfully sent a limit order to buy 4.00 contracts at 10.0");

4@9//) :
successfully sent a limit order to sell 4.00 contracts at 9.0");

Continuous

. anguage of the Problem Domain - DSL

@Test
public void shouldSupportPlacingValidBuyAndSellLimitOrders ()
{
trading.selectDealTicket ("instrument") ;
trading.dealTicket.placeOrder ("type: limit", ”“bid: 4@10”);
trading.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
trading.dealTicket.dismissFeedbackMessage () ;

trading.dealTicket.placeOrder ("type: limit", “ask: 4@9”);
trading.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to sell 4.00 contracts at 9.0");

@Test
public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder ()

{
fixAPIMarketMaker.placeMassOrder ("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

fixAPI.placeOrder ("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
fixAPI.waitForExecutionReport ("executionType: Fill", "orderStatus: Filled",

"side: buy", "quantity: 4", "matched: 4", "remaining: 0",

"executionPrice: 50", "executionQuantity: 4");

Continuous

. anguage of the Problem Domain - DSL

@Test
public void shouldSupportPlacingValidBuyAndSellLimitOrders ()
{
trading.selectDealTicket ("instrument") ;
trading.dealTicket.placeOrder ("type: limit", ”“bid: 4@10”);
trading.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to buy 4.00 contracts at 10.0");
trading.dealTicket.dismissFeedbackMessage () ;

trading.dealTicket.placeOrder ("type: limit", “ask: 4@9”);
trading.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to sell 4.00 contracts at 9.0");

@Test
public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder ()

{
fixAPIMarketMaker.placeMassOrder ("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

fixAPI.placeOrder ("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
fixAPI.waitForExecutionReport ("executionType: Fill", "orderStatus: Filled",
"side: buy", "quantity: 4", "matched: 4", "remaining: 0",
"executionPrice: 50", "executionQuantity: 4");
}
@Before

public void beforeEveryTest ()
{

adminAPI.createInstrument ("name: instrument") ;
registrationAPI.createUser ("user") ;

registrationAPI.createUser ("marketMaker", "accountType: MARKET MAKER") ;
tradingUI.loginAsLive ("user") ;

Continuous

. anguage of the Problem Domain - DSL

public void placeOrder (final String... args)
{
final DslParams params =
new DslParams (args,
new OptionalParam("type") .setDefault("Limit") .setAllowedValues("1limit", "market", "StopMarke:
new OptionalParam("side") .setDefault ("Buy") .setAllowedValues ("buy", "sell"),
new OptionalParam("price"),
new OptionalParam("triggerPrice"),
new OptionalParam("quantity"),
new OptionalParam("stopProfitOffset"),
new OptionalParam("stopLossOffset"),
new OptionalParam("confirmFeedback") .setDefault ("true"))

getDealTicketPageDriver () .placeOrder (params.value ("type"),
params.value ("side"),
params.value ("price"),
params.value ("triggerPrice"),
params.value ("quantity"),
params.value ("stopProfitOffset"),
params.value ("stopLossOffset")) ;

if (params.valueAsBoolean ("confirmFeedback"))
{

getDealTicketPageDriver () .clickOrderFeedbackConfirmationButton () ;
}

LOGGER.debug ("placeOrder (" + Arrays.deepToString(args) + ")");

Continuous

. anguage of the Problem Domain - DSL

@Test
public void shouldSupportPlacingValidBuyAndSellLimitOrders ()
{
tradingUI.showDealTicket ("instrument") ;
tradingUI.dealTicket.placeOrder ("type: limit", ”“bid: 4Q@10");
tradingUI.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to buy 4.00 contracts at
tradingUI.dealTicket.dismissFeedbackMessage () ;

tradingUI.dealTicket.placeOrder ("type: limit", “ask: 4@9”);
tradingUI.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to sell 4.00 contracts at

@Test
public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder ()

{
fixAPIMarketMaker.placeMassOrder ("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

fixAPI.placeOrder ("instrument", "side: buy", '"quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
fixAPI.waitForExecutionReport ("executionType: Fill", "orderStatus: Filled",

"side: buy", "quantity: 4", "matched: 4", "remaining: 0",

"executionPrice: 50", "executionQuantity: 4");

Continuous

. anguage of the Problem Domain - DSL

@Test
public void shouldSupportPlacingValidBuyAndSellLimitOrders ()
{
tradingUI.showDealTicket ("instrument") ;
tradingUI.dealTicket.placeOrder ("type: limit", ”“bid: 4Q@10");
tradingUI.dealTicket.checkFeedbackMessage ("You have successfully sent a limit order to buy 4.00 contracts at
tradingUI.dealTicket.dismissFeedbackMessage () ;

tradinalll dealTicket placeOrder ("type: limit", “ask: 4Q@9”);
tradingUI.dealTicket.chegkFeedbackMessage ("You have successfully sent a limit order to sell 4.00 contracts at

@Test
public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder ()

{
fixAPIMarketMaker.placeMassOrder ("instrument", "ask: 11@52", "ask: 10@51", "ask: 10@50", "bid: 10@49");

fixART. . placeOrder ("instrument", "side: buy", "quantity: 4", "goodUntil: Immediate", "allowUnmatched: true");
fixAPI.waitForExecutionReport ("executionType: Fill", "orderStatus: Filled",

"side: buy", "quantity: 4", "matched: 4", "remaining: 0",

"executionPrice: 50", "executionQuantity: 4");

Continuous

. anguage of the Problem Domain - DSL

@Channel (fixApi, dealTicket, publicApi)
@Test
public void shouldSuccessfullyPlaceAnImmediateOrCancelBuyMarketOrder ()

{
trading.placeOrder ("instrument", "side: buy", “price: 123.45”, "quantity: 4", "goodUntil: Immediate”);

trading.waitForExecutionReport ("executionType: Fill", "orderStatus: Filled",
"side: buy", "quantity: 4", "matched: 4", "remaining: 0",
"executionPrice: 123.45", "executionQuantity: 4");

. anguage of the Problem Domain - DSL

{@Channel (fixApi, dealTicket, publicApi) J

public void shoﬁldSucééSéfuilyPlaceAnImmediateOrCancelBuyMarketOrder()
{

“g;ading.placeOrder("instrument", "side: buy", “price: 123.45”, "quantity: 4", "goodUntil: Immediate”) ;

’jaitForExecutionReport("executionType: Fill", "orderStatus: Filled",
‘ "side: buy", "quantity: 4", "matched: 4", "remaining: 0",
"executionPrice: 123.45", "executionQuantity: 4");

Properties of Good Acceptance Tests

* "What” not "How"

* |solated from other tests

 Repeatable

e Uses the language of the problem domain

e Jests ANY change

e Efficient

c Continuous

Properties of Good Acceptance Tests

 Repeatable

Testing with Time

e Jest Cases should be deterministic

 Time is a problem for determinism - There are
two options:

lTesting With Time - Ignore Time

Mechanism

-llter out time-based values in your test
Infrastructure so that they are ignored

Pros:
* Simple!
cons:

e (Can miss errors

* Prevents any hope of testing complex time-based

scenarios
c Continuous

Testing With Time - Controlling Time

Mechanism

Treat Time as an external dependency, like any
external system - and Fake it

Pros:
* Very Flexible!

* (Can simulate any time-based scenario, with time under the
control of the test case.

cons:

* Slightly more complex infrastructure

c Continuous

Testing With Time - Controlling Time

@Test
public void shouldBeOverdueAfterOneMonth()

{

book = library.borrowBook(“Continuous Delivery”);
assertFalse(book.isOverdue());

time.travel(“+1 week”);
assertFalse(book.isOverdue());

time.travel(“+4 weeks”);
assertTrue(book.isOverdue());

(Continuous

Testing With Time - Controlling Time

@Test
public void shouldBeOverdueAfterOneMonth()

{

book = library.borrowBook(“Continuous Delivery”);
assertFalse(book.isOverdue());

time.travel("+1 week”);
asseriraise(vouk.isOverdue());

time.travel(“+4 weeks”):
assertirue(book.isOverdue());

(Continuous

Testing With Time - Controlling Time

Testing With Time - Controlling Time

est Infrastructure

Testing With Time - Controlling Time

Lase Lase Lase Lase

Testing With Time - Controlling Time
& E

Testing With Time - Controlling Time
2EEE

©

Test Environment Types

 Some Tests need special treatment.

* [ag lests with properties and allocate them
dynamically:

Test Environment Types

e Some lests need special treatment.

* Jag lests with properties and allocate them
dynamically:

@TimeTravel
@QTest
public void shouldDoSomethingThatNeedsFakeTime ()

@Destructive
@Test
public void shouldDoSomethingThatKillsPartOfTheSystem()

@QFPGA (version=l. 3)
@Test
public void shouldDoSomethlngThatRequlresSpec1fchardware()

Continuous

Test Environment Types

e Some lests need special treatment.

* Jag lests with properties and allocate them
dynamically:

@TimeTravel
@Test
public void shouldDoSomethingThatNeedsFakeTime ()

@Destructive
@Test
public void shouldDoSomethingThatKillsPartOfTheSystem()

@QFPGA (version=l. 3)
dTest
public void shouldDoSomethlngThatRequlresSpec1fchardware()

Continuous

Test Environment Types

Time remaining:

00:18:37

C) devgaldn
L 1 (] o
desiiy 1 devianld
o" 16 devrtadevrialo
ko deviannl0

devrial 22

fevnalor

Sevrtalos
devrial 0} devnan’? devrial 0%

deviast] devrtals dmyrtall

davazo

deviasz20tval0s © devrial 10
o PARALLEL devral 9
enalll

devianls oevitall
devital O

deviasi?

" O

@, devaaro’s
dewrtall4 devaasll

¢ devaar0s
~ deasas 1800‘“(’)

devmmalls

deviialle devimalid devrial 1l

devrialgy O

devviaod o Sevsar0h devsanol

d”usf)% “'ml);

devrtal o Jdewrtal 12

deysas0¢

Failed Tests: 1

Test Environment Types

Time remaining:

00:18:37

C) devgaldn
L 1 (] o
desiiy 1 devianld
o" 16 devrtadevrialo
ko deviannl0

devrial 22

fevnalor

Sevrtalos
devrial 0} devnan’? devrial 0%

deviast] devrtals dmyrtall

davazo

deviasz20tval0s © devrial 10
o PARALLEL devral 9
enalll

devianls oevitall
devital O

deviasi?

" O

@, devaaro’s
dewrtall4 devaasll

¢ devaar0s
~ deasas 1800‘“(’)

devmmalls

deviialle devimalid devrial 1l

devrialgy O

devviaod o Sevsar0h devsanol

d”usf)% “'ml);

devrtal o Jdewrtal 12

deysas0¢

Failed Tests: 1

Properties of Good Acceptance Tests

* "What” not "How"

* |solated from other tests

 Repeatable

e Uses the language of the problem domain

e Jests ANY change

e Efficient

c Continuous

Properties of Good Acceptance Tests

 Repeatable

Production-like Test Environments

ke Test Environments

Production

Production-like Test Environments

Production-like Test Environments

Production-like Test Environments

ke Test Environments

Production

Production-like Test Environments

Make Test Cases Internally Synchronous

Make Test Cases Internally Synchronous

* ook for a “Concluding Event” listen for that in
your DSL to report an async call as complete

Make Test Cases Internally Synchronous

e | 0O
you

K for a “Conc

" DSL to repo

uding

—vent” listen for that In

't an async call as complete

Example DSL level Implementation...

public String placeOrder (String params..)

{

orderSent = sendAsyncPlaceOrderMessage (parseOrderParams (params)) ;
return waitForOrderConfirmedOrFailOnTimeOut (orderSent) ;

}

Continuous

Make Test Cases Internally Synchronous

e | 0O
you

K for a “Conc

" DSL to repo

uding

—vent” listen for that In

't an async call as complete

Example DSL level Implementation...

public String placeOrder (String params..)

{

orderSent = sendAsyncPlaceOrderMessage (parseOrderPar::us (params)) ;
return waitForOrderConfirmedOrFailOnTimeOut (ordersent'® ;

}

Continuous

Make Test Cases Internally Synchronous

e | 0Ok for

your DSL to repo

a “Concluding Event” listen for that in

* |t you really have to, implement a
‘poll-and-timeout™ mechanism in your test-
infrastructure

't an async call as complete

* Never, Never, Never, put a “wait(xx)” and expect

your tes

'S to be (a) Reliable or (b)

—fficient!

c Continuous

Make Test Cases Internally Synchronous

* ook for a “Concluding Event” listen for that in
your DSL to report an async call as complete

* |t you really have to, implement a
‘poll-and-timeout™ mechanism in your test-
infrastructure

o Never aer Naver, ot L waikbed ™ dnd expect
Vour fests, & & (d) tHeliauic €. ,f“) —iricient!

c Continuous

Scaling-Up

Source
Repository

Production Env.

L
Artifact

. Deployment '
Pp.
A

Deployment '
App.

Manual Test Env.

c Continuous

Scaling-Up

Scaling-Up

Scaling-Up

Scaling-Up

Scaling-Up

Anti-Patterns in Acceptance lesting

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

e Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

e Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

 Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

 Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

 Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

« Don’t assume Nasty Automated Testing Products®™ will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

c Continuous

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

 Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

 Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

« Don’t assume Nasty Automated Testing Products®™ will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

 Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

c Continuous

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

 Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

 Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

« Don’t assume Nasty Automated Testing Products®™ will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

 Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

e Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in
your use of test environments.

c Continuous

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

 Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

 Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

« Don’t assume Nasty Automated Testing Products®™ will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

 Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

e Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in
your use of test environments.

o Don’t include Systems outside of your control in your Acceptance Test Scope

c Continuous

Anti-Patterns in Acceptance lesting

 Don’t use Ul Record-and-playback Systems

 Don’t Record-and-playback production data. This has a role, but it is NOT
Acceptance Testing

 Don’t dump production data to your test systems, instead define the absolute
minimum data that you need

« Don’t assume Nasty Automated Testing Products®™ will do what you need. Be very
sceptical about them. Start with YOUR strategy and evaluate tools against that.

 Don’t have a separate Testing/QA team! Quality is down to everyone - Developers
own Acceptance Tests!!!

e Don’t let every Test start and init the app. Optimise for Cycle-Time, be efficient in
your use of test environments.

o Don’t include Systems outside of your control in your Acceptance Test Scope

e Don’t Put ‘wait()’ instructions in your tests hoping it will solve intermittency

c Continuous

Tricks for Success

Tricks for Success

e Do Ensure That Developers Own the Tests

Tricks for Success

e Do Ensure That Developers Own the Tests

e Do Focus Your Tests on “What” not “How”

Tricks for Success

e Do Ensure That Developers Own the Tests

e Do Focus Your Tests on “What” not “How”

Do Think of Your Tests as “Executable Specifications”

Tricks for Success

Do Ensure That Developers Own the Tests

Do Focus Your Tests on “What” not “How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”

Tricks for Success

Do Ensure That Developers Own the Tests

Do Focus Your Tests on “What” not “How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”

Do Keep Tests Isolated from one-another

Tricks for Success

e Do Ensure That Developers Own the Tests

* Do Focus Your Tests on "What” not "How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”

Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

Tricks for Success

e Do Ensure That Developers Own the Tests

* Do Focus Your Tests on "What” not "How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”
Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

* Do Use the Language of the Problem Domain - Do try the DSL approach, whatever

Tricks for Success

e Do Ensure That Developers Own the Tests

* Do Focus Your Tests on "What” not "How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”
Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

* Do Use the Language of the Problem Domain - Do try the DSL approach, whatever

Tricks for Success

e Do Ensure That Developers Own the Tests

* Do Focus Your Tests on "What” not "How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”
Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

* Do Use the Language of the Problem Domain - Do try the DSL approach, whatever

Tricks for Success

Do Ensure That Developers Own the Tests

Do Focus Your Tests on “What” not “How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”
Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

Do Stub External Systems
Do Test in “Production-Like” Environments

Do Make Instructions Appear Synchronous at the Level of the Test Case

c Continuous

Tricks for Success

Do Ensure That Developers Own the Tests

Do Focus Your Tests on “What” not “How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”
Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

Do Stub External Systems
Do Test in “Production-Like” Environments
Do Make Instructions Appear Synchronous at the Level of the Test Case

Do Test for ANY change

c Continuous

Tricks for Success

Do Ensure That Developers Own the Tests

Do Focus Your Tests on “What” not “How”

Do Think of Your Tests as “Executable Specifications”

Do Make Acceptance Testing Part of your “Definition of Done”
Do Keep Tests Isolated from one-another

Do Keep Your Tests Repeatable

Do Use the Language of the Problem Domain - Do try the DSL approach, whatever
your tech.

Do Stub External Systems

Do Test in "Production-Like” Environments

Do Make Instructions Appear Synchronous at the Level of the Test Case
Do Test for ANY change

Do Keep your Tests Efficient

c Continuous

Q&A

Continuous

http.//www.continuous-delivery.co.uk

Dave Farley

http://www.davefarley.net
@davefarley77 c Continuous

http://www.davefarley.net
http://www.davefarley.net

