
DDD & Microservices
At last, some boundaries!

Eric Evans
@ericevans0

domainlanguage.com

Complex business logic

Domain-driven Design Domain modeling

Ubiquitous language

You say ‘bandwagon’ like it’s a bad thing!

Adrian Cockcroft

Why do I like microservices?

• Autonomous teams with isolated implementation.

• Acknowledge the rough and tumble of enterprises.

• Cattle not pets.

• A philosophical break from the past — gives us a
chance to shake assumptions.

• But! Different people mean different things.

Services and Messages

Sm mm m mm

A
m

m

m m

m m
B

A
a

b

a a

b b
B

How do they understand the messages?

Bounded Context

• context The setting in which a word or statement
appears that determines its meaning

• bounded context The conditions under which a
particular model is defined and applicable.

A
a

b

a a

b b
B

partners
A B

Context Map translator

bounded contexts

partners
A B

Context Map

A
a

b

a a

b b
B

C

a

a

a

Asymmetrical Relationships

Context Name Context Name
relationship

(point toward power)

Context Map

A
a

b

a a

b b
B

C

a

a

a

partners
A B

C

Context Map

A
a

b

a a

b b
B

C

a

a

a

partners
A B

C

conforms

Context Map

partners
A B

C

conforms

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

partners
A B

C

conforms

D

AC

Context Map

partners
A B

C

conforms

D

AC

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

partner
sA B

C

conforms

D

AC

E conforms

Context Map

partner
sA B

C

conforms

D

AC

E conforms

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a
a

a

a

Context Map

partner
sA B

C

conforms

D

AC

E conforms

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

There are always
multiple models.

enterprise model
shared database schema

unified field theory
one ring

Models need to be clear,  
not big.

• Useful models need crisp definitions.

• Definitions require clear context.

• Useful models need simple assertions.

• Assertions require boundaries.

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

Context Map

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

BBoM

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

partners

A B

C

conforms

D

AC

E conforms

Fconforms

AC

BBoMBBoM

Context Map

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

BBoMBBoM

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E ae ae

F

b
b

ae

ae

ae

f

Fiction!
Map what is.

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E ae ae

F

b
b

ae

ae

ae

f

What can be done?

partners

A B

C

conforms

D

AC

E

Fconforms

AC

BBoMBBoM

BBoM

Not all of a large system
will be well designed.

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E ae ae

F

b
b

ae

ae

ae

f

partners
A B

C

conforms

D

AC

E

Fconforms

AC

BBoMBBoM

BBoM

???

???

Mitigation

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E ae ae

F

b
b

ae

ae

ae

f

partners
A B

C

conforms

D

AC

E

Fconforms

AC

BBoMBBoM

AC

AC
BBoM

Microservice as  
Context Boundary

• Allow high-concept modeling in a messy world.

• Allow specialized models for distinct problems.

• Mitigate consequences of design mistakes.

• Acknowledge the rough and tumble of enterprises.

• But…

• Very interesting stuff is not inside the services!

Interchange context

Context Map

A
a

b

a a

b b
B

C

a

a

a

D

a
a

a

E a a

F

b
b

a

a

a

f

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

Context Map

partners
A B

C

conforms

D

AC

E conforms

Fconforms

AC

A
a

b

a a

b b
B

C

i

i

i

D

i
i

i

E i i

F

b
b

i

i

i

f

Context Map

A
a

b

a a

b b
B

C

i

i

i

D

i
i

i

E i i

F

b
b

i

i

i

f

partners
I

B

C

conforms

D

AC

E conforms

Fconforms

AC

AAC

`
• A relatively generic data model for sharing.

• or…

• A place to model protocols of interaction.

• Modeling and design of higher-level solutions.

• A domain language tuned to these purposes.

Interchange Context
• Expressed in terms of service interfaces/messages.

• Distinct from the objects/functions of the internals of a
service.

• Prevents distortion/freezing of early-dominant contexts.

• Gives big-picture understanding when we have many
services.

• Usually more than one! (Avoid enterprise model.)

Why not logical boundaries?

• Smart people I respect point out that most of what I
want is the logical partitioning of the system.

• We’ve had decades to get that to work.

• Some techniques are too subtle to survive the
rough and tumble.

Wrap up
• Subtle design (such as DDD) requires concrete

boundaries. Microservices have them.

• Proliferation of services recreate some of the old
problems.

• Context Maps help visualize and communicate
about those problems.

• Modest use of interchange contexts can help
produce coherent sets of microservices.

Not all of a large system
will be well designed.

DDD & Microservices
At last, some boundaries!

Eric Evans
@ericevans0

domainlanguage.com

