
©2015 Azul Systems, Inc.	 	 	 	 	 	

Cassandra in

Response Time Sensitive

Environments

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

©2015 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene

co-founder, CTO @Azul
Systems

Have been working on
“think different” GC
approaches since 2002

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise apps,
etc...

I also depress people by
demonstrating how terribly
wrong their latency
measurements are… * working on real-world trash compaction issues, circa 2004

©2015 Azul Systems, Inc.	 	 	 	 	 	

We build Java Virtual Machines

Powering mission-critical Java applications for Global 2000+

Deep expertise with latency-sensitive applications

from human sensitivity to application responsiveness
(seconds to fractions of a second)

to low latency trading systems (fractions of a msec)

Cassandra is one of our common deployment scenarios

Azul Systems

©2015 Azul Systems, Inc.	 	 	 	 	 	

Zing Overview

©2015 Azul Systems, Inc.	 	 	 	 	 	

A JVM for Linux/x86 servers

Delivers a continuously responsive execution platform

ELIMINATES Garbage Collection as a concern for enterprise
applications

Very wide operating range:

Used in everything from low latency to huge in-memory apps

1GB to 1TB Heaps. 10MB/sec to 20GB/sec allocation rates.

Combats Execution inconsistencies of all types

Not just GC: Anything that makes a JVM glitch or slow down

“Not just Fast. Always Fast."

Zing

©2015 Azul Systems, Inc.	 	 	 	 	 	

What is Zing good for?

If you have a server-based Java application

And you are running on Linux (x86)

And you use using more than ~300MB of memory

Then Zing will likely deliver superior behavior
metrics

©2015 Azul Systems, Inc.	 	 	 	 	 	

Where Zing shines

Low latency
Eliminate behavior blips down to the sub-millisecond-units level

Machine-to-machine “stuff”
Support higher *sustainable* throughput (the one that meets SLAs)

Human response times
Eliminate user-annoying response time blips. Multi-second and even
fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *if needed* (e.g. larger virtual user
counts, or larger cache, in-memory state, or consolidating multiple
instances)

“Large” data and in-memory analytics
Make batch stuff “business real time”. Gain super-efficiencies.

©2015 Azul Systems, Inc.	 	 	 	 	 	

Why Zing?

©2015 Azul Systems, Inc.	 	 	 	 	 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2015 Azul Systems, Inc.	 	 	 	 	 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"Max=20.384&
0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Drawn to scale

©2015 Azul Systems, Inc.	 	 	 	 	 	

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

©2015 Azul Systems, Inc.	 	 	 	 	 	

Percentiles Matter

©2015 Azul Systems, Inc.	 	 	 	 	 	

Is the 99%’ile “rare”?

©2015 Azul Systems, Inc.	 	 	 	 	 	

Cumulative probability…

What are the chances of a single web page
view experiencing the 99%’ile latency of:

- A single search engine node?

- A single Key/Value store node?

- A single Database node?

- A single CDN request?

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

Which HTTP response time metric is more
“representative” of user experience?

The 95%’lie or the 99.9%’lie

©2015 Azul Systems, Inc.	 	 	 	 	 	

Gauging user experience

Example: A typical user session involves 5 page
loads, averaging 40 resources per page.

- How many of our users will NOT experience
something worse than the 95%’lie?

Answer: ~0.003%

- How may of our users will experience at least one
response that is longer than the 99.9%’lie?

Answer: ~18%

©2015 Azul Systems, Inc.	 	 	 	 	 	

Response Time vs. Service Time

©2015 Azul Systems, Inc.	 	 	 	 	 	

Service Time vs. Response Time

©2015 Azul Systems, Inc.	 	 	 	 	 	

Service Time, 90K/s vs 80K/s

©2015 Azul Systems, Inc.	 	 	 	 	 	

Response Time, 90K/s vs 80K/s

©2015 Azul Systems, Inc.	 	 	 	 	 	

Response Time, 90K/s vs 80K/s : Boom!

©2015 Azul Systems, Inc.	 	 	 	 	 	

“But with Cassandra’s Coordinator
and Quorum Consistency levels…”

Theory: If one node pauses, other nodes
are not likely to pause at the same time

… so a quorum will be reached without
observing any one node's pause

“coordinator as savior” latency myth

©2015 Azul Systems, Inc.	 	 	 	 	 	

Anatomy of a quorum read…

A pause

here won’t

be noticed

by client…

What about

a pause here?

And since every node is also a coordinator…

©2015 Azul Systems, Inc.	 	 	 	 	 	

Cassandra behavior on Zing

©2015 Azul Systems, Inc.	 	 	 	 	 	 Response Time Service time

©2015 Azul Systems, Inc.	 	 	 	 	 	
Service timeService timeResponse TimeResponse Time

©2015 Azul Systems, Inc.	 	 	 	 	 	

Response Time Service time

OpenJDK: 200-1400 msec stalls

Zing

Response Time Service time

©2015 Azul Systems, Inc.	 	 	 	 	 	

OpenJDK: 200-1400 msec stalls

Zing (drawn to scale)

Service timeResponse Time Response TimeService time

©2015 Azul Systems, Inc.	 	 	 	 	 	

What if we focused on
“already low latency” setups?

“I know really bad GC pauses may
happen once in a while, but I’m
interested in the common behavior
between those…”

©2015 Azul Systems, Inc.	 	 	 	 	 	

A set of pure read experiments…

aimed at highly repeatable results

(focused on frequent blips, not the hard to reliably repeat huge pauses)

 * Same AWS r3.8xlarge instance (underutilized)
 ** single node cluster, pre-primed with 5M entries
*** stressed via (enhanced) cassandra-stress, pure read test

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot @90K/s & 85K/s vs.
Zing @90K/s & 85K/s

Wrong Place to Look:
They both “suck” at >85K/sec

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot 85K/s vs. Zing 85K/s

Looks good, but still
the wrong place to look

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot @40K/s vs. Zing @40K/s

More interesting…
What can we do with this?

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot @10K/s vs. Zing @40K/s

E.g. if “99%’ile < 5msec” was a goal:
Zing delivers similar 99%’ile and superior 99.9%’ile+

while carrying 4x the throughput

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot @2K/s vs. Zing @20K/s

E.g. if “99.9%’ile < 10msec” was a goal:
Zing delivers similar 99%’ile and 99.9%’ile

while carrying 10x the throughput

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot @2k thru 80k

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot @2k thru 70k

©2015 Azul Systems, Inc.	 	 	 	 	 	

Zing @20k thru 70k

©2015 Azul Systems, Inc.	 	 	 	 	 	

Zing & HotSpot @2k thru 70k

©2015 Azul Systems, Inc.	 	 	 	 	 	

Zing & HotSpot, 10K/s thru 60K/s

HotSpot @ 10K, 20K, 40K, 60K

Zing @20K, 40K, 60K

Lots of conclusions can be drawn from the above…
E.g. Zing delivers a consistent 100x reduction in the

rate of occurrence of >20msec response times

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

OpenJDK: 200-1400 msec stalls

Zing (drawn to scale)

Service timeResponse Time Response TimeService time

©2015 Azul Systems, Inc.	 	 	 	 	 	

This is Cassandra on HotSpot

This is Cassandra on Zing

Any Questions?

A simple visual summary

