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About me: Gil Tene 

co-founder, CTO  @Azul 
Systems


Have been working on 
“think different” GC 
approaches since 2002


A Long history building 
Virtual & Physical 
Machines, Operating 
Systems, Enterprise apps, 
etc...


I also depress people by 
demonstrating how terribly 
wrong their latency 
measurements are… * working on real-world trash compaction issues, circa 2004
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We build Java Virtual Machines

Powering mission-critical Java applications for Global 2000+

Deep expertise with latency-sensitive applications

from human sensitivity to application responsiveness 
(seconds to fractions of a second) 

to low latency trading systems (fractions of a msec)

Cassandra is one of our common deployment scenarios

Azul Systems
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Zing Overview
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A JVM for Linux/x86 servers

Delivers a continuously responsive execution platform

ELIMINATES Garbage Collection as a concern for enterprise 
applications

Very wide operating range:

Used in everything from low latency to huge in-memory apps

1GB to 1TB Heaps. 10MB/sec to 20GB/sec allocation rates.

Combats Execution inconsistencies of all types

Not just GC: Anything that makes a JVM glitch or slow down

“Not just Fast. Always Fast."

Zing
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What is Zing good for?

If you have a server-based Java application

And you are running on Linux (x86)

And you use using more than ~300MB of memory

Then Zing will likely deliver superior behavior 
metrics 
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Where Zing shines

Low latency
Eliminate behavior blips down to the sub-millisecond-units level

Machine-to-machine “stuff”
Support higher *sustainable* throughput (the one that meets SLAs)

Human response times
Eliminate user-annoying response time blips. Multi-second and even 
fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *if needed* (e.g. larger virtual user 
counts, or larger cache, in-memory state, or consolidating multiple 
instances)

“Large” data and in-memory analytics
Make batch stuff “business real time”. Gain super-efficiencies.
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Why Zing?
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Oracle HotSpot CMS, 1GB in an 8GB heap
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Zing 5, 1GB in an 8GB heap
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Oracle HotSpot CMS, 1GB in an 8GB heap
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Zing 5, 1GB in an 8GB heap
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Drawn to scale
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Sustainable Throughput: 
The throughput achieved while 
safely maintaining service levels 
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Percentiles Matter
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Is the 99%’ile “rare”?
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Cumulative probability…

What are the chances of a single web page 
view experiencing the 99%’ile latency of: 

- A single search engine node? 

- A single Key/Value store node? 

- A single Database node? 

- A single CDN request? 
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Which HTTP response time metric is more 
“representative” of user experience?

The 95%’lie      or      the 99.9%’lie
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Gauging user experience

Example: A typical user session involves 5 page 
loads, averaging 40 resources per page. 

- How many of our users will NOT experience 
something worse than the 95%’lie? 

Answer: ~0.003% 

- How may of our users will experience at least one 
response that is longer than the 99.9%’lie? 

Answer: ~18% 
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Response Time vs. Service Time
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Service Time vs. Response Time
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Service Time, 90K/s vs 80K/s
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Response Time, 90K/s vs 80K/s
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Response Time, 90K/s vs 80K/s : Boom!



©2015 Azul Systems, Inc.	 	 	 	 	 	

“But with Cassandra’s Coordinator 
and Quorum Consistency levels…”

Theory: If one node pauses, other nodes 
are not likely to pause at the same time 

… so a quorum will be reached without 
observing any one node's pause 

“coordinator as savior” latency myth
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Anatomy of a quorum read…

A pause

here won’t

be noticed

by client…

What about

a pause here?

And since every node is also a coordinator…
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Cassandra behavior on Zing
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Service timeService timeResponse TimeResponse Time
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Response Time Service time

OpenJDK: 200-1400 msec stalls

Zing

Response Time Service time
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OpenJDK: 200-1400 msec stalls

Zing (drawn to scale)

Service timeResponse Time Response TimeService time
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What if we focused on  
“already low latency” setups?

“I know really bad GC pauses may 
happen once in a while, but I’m 
interested in the common behavior 
between those…” 
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A set of pure read experiments…

aimed at highly repeatable results 

(focused on frequent blips, not the hard to reliably repeat huge pauses)

    * Same AWS r3.8xlarge instance (underutilized) 
  ** single node cluster, pre-primed with 5M entries 
*** stressed via (enhanced) cassandra-stress, pure read test
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HotSpot @90K/s & 85K/s vs. 
Zing @90K/s & 85K/s

Wrong Place to Look: 
They both “suck” at >85K/sec
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HotSpot 85K/s vs. Zing 85K/s

Looks good, but still 
the wrong place to look
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HotSpot @40K/s vs. Zing @40K/s

More interesting… 
What can we do with this?
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HotSpot @10K/s vs. Zing @40K/s

E.g. if “99%’ile < 5msec” was a goal: 
Zing delivers similar 99%’ile and superior 99.9%’ile+ 

while carrying 4x the throughput
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HotSpot @2K/s vs. Zing @20K/s

E.g. if “99.9%’ile < 10msec” was a goal: 
Zing delivers similar 99%’ile and 99.9%’ile 

while carrying 10x the throughput
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HotSpot @2k thru 80k
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HotSpot @2k thru 70k
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Zing @20k thru 70k
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Zing & HotSpot @2k thru 70k
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Zing & HotSpot, 10K/s thru 60K/s

HotSpot @ 10K, 20K, 40K, 60K

Zing @20K, 40K, 60K

Lots of conclusions can be drawn from the above… 
E.g. Zing delivers a consistent 100x reduction in the  

rate of occurrence of >20msec response times
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OpenJDK: 200-1400 msec stalls

Zing (drawn to scale)

Service timeResponse Time Response TimeService time
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This is Cassandra on HotSpot

This is Cassandra on Zing

Any Questions?

A simple visual summary


