Graphs vs Fraud!

Dr. Jim Webber Chief Scientist, Neo4j @jimwebber

Overview

- First-party Fraud
- Whiplash for Cash
- Online Payment and Identity
- Master Data Management
- Provenance
- Governance

First-Party Fraud

- Fraudster's aim: apply for lines of credit, act normally, extend credit, then...run off with it
- Fabricate a network of synthetic IDs, aggregate smaller lines of credit into substantial value
- Often a hidden problem since only banks are hit
 - Whereas third-party fraud involves customers whose identities are stolen
 - More on that later...

So what?

- \$10's billions lost by US banks every year
- 25% of the total consumer credit write-offs in the USA
- Around 20% of unsecured bad debt in EU and USA is misclassified
 - In reality it is first-party fraud

Then the fraud happens...

- Revolving doors strategy
 - Money moves from account to account to provide legitimate transaction history
- Banks duly increase credit lines
 - Observed responsible credit behaviour
- Fraudsters max out all lines of credit and then bust out

... and the Bank loses

- Collections process ensues
 - Real addresses are visited
 - Fraudsters deny all knowledge of synthetic IDs
 - Bank writes off debt
- Two fraudsters can easily rack up \$80k
- Well organised crime rings can rack up many times that

Discrete Analysis Fails to predict...

Pros: Simple. Works with rookie fraudsters. **Cons**: False Positives. False Negatives.

...and Makes it Hard to React

- When the bust out starts to happen, how do you know what to cancel?
- And how do you do it faster then the fraudster to limit your losses?
- A graph, that's how!

Probably Non-Fraudulent Cohabiters

\$ MATCH (p1:Person)-[:HOLDS|LIVES_AT*]->()<-[:HOLDS|LIVES_AT*]-(p2:Person) WHERE p1 ↔ p2 RETURN p1 LIMIT 10</pre>

Probable Cohabiters Query

MATCH (p1:Person)-[:HOLDS|LIVES_AT*]->()
 <-[:HOLDS|LIVES_AT*]-(p2:Person)
WHERE p1 <> p2
RETURN DISTINCT p1

Risky People

MATCH (p1:Person)-[:HOLDS|LIVES_AT]->()
 <-[:HOLDS|LIVES_AT]-(p2:Person)
 -[:HOLDS|LIVES_AT]->()
 <-[:HOLDS|LIVES_AT]-(p3:Person)
WHERE p1 <> p2 AND p2 <> p3 AND p3 <> p1
WITH collect (p1.name) + collect(p2.name) +
 collect(p3.name) AS names
UNWIND names AS fraudster
RETURN DISTINCT fraudster

Pretty quick...

Number of people: [5163] Number of fraudsters: [40] Time taken: [2495] ms

Localise the focus

MATCH (p1:Person {name: 'Sol'}) - [:HOLDS | LIVES AT] ->() ...

Number of fraudsters: [5] Time taken: [431] ms

Quickly Revoke Cards in Bust-Out

MATCH (p1:Person) - [:HOLDS|LIVES AT] -> ()<-[:HOLDS|LIVES AT]-(p2:Person) -[:HOLDS|LIVES AT] ->()<-[:HOLDS|LIVES AT]-(p3:Person) WHERE p1 <> p2 AND p2 <> p3 AND p3 <> p1 WITH collect (p1) + collect(p2) + collect(p3)AS names UNWIND names AS fraudster MATCH (fraudster) - [o:OWNS] -> (card:CreditCard) DELETE o, card

Whiplash

Prior to impact

1/20th second later

1/10th second later

http://georgia-clinic.com/blog/wp-content/uploads/2013/10/whiplash.jpg

Whiplash for Cash

Prior to impact

1/20th second later

1/10th second later

6 months later

http://georgia-clinic.com/blog/wp-content/uploads/2013/10/whiplash.jpg

http://cdn2.holytaco.com/wp-content/uploads/2012/06/lottery-winner.jpg

Risk

- \$80,000,000,000 annually on auto insurance fraud and growing
 - Even small % reductions are worthwhile!
- British policyholders pay ~£100 per year to cover fraud
- US drivers pay \$200-\$300 per year according to US National Insurance Crime Bureau

How?

"Flash for Cash"

"Crash for Cash"

Regular Drivers

Regular Drivers Query

MATCH (p:Person)-[:DRIVES]->(c:Car)
WHERE NOT (p)<-[:BRIEFED]-(:Lawyer)
AND NOT (p)<-[:EXAMINED]-(:Doctor)
AND NOT (p)-[:WITNESSED]->(:Car)
AND NOT (p)-[:PASSENGER_IN]->(:Car)
RETURN p,c LIMIT 100

Genuine Claimants

\$ MATCH (p:Person)-[:DRIVES]->(:Car), (p)<-[:BRIEFED]-(:Lawyer), (p)<-[:EXAMINED]-(:Doctor) OPTIONAL MATCH (p)-[w:WITNESSED]->(:Car), ... Doctor(2) Lawyer(1) Person(105) *(110) Car(2) ٢ Graph EXAMINED(20) BRIEFED(20) Rows EXAMPLEMED EXAMINED BRIEFEBRIEFED BRIEFED EXAMINED IEFED BRIEFED XAMMVED -RIEFEBRIEFED Edata Bar BRIEFED EXAMIN 20028 EXAMINED RIEFED BRIEFED -BRIEFED-BRIEFED EXAM BRIE XAMINED WIVED Obenetto d SED. CI JUNE CHNINA CH ERMINED Lawyer No properties

Genuine Claimants Query

MATCH (p:Person)-[:DRIVES]->(:Car), (p)<-[:BRIEFED]-(:Lawyer), (p)<-[:EXAMINED]-(:Doctor) OPTIONAL MATCH (p)-[w:WITNESSED]->(:Car), (p)-[pi:PASSENGER_IN]->(:Car) WITH p, count(w) AS noWitnessed, count(pi) as noPassengerIn

Fraudsters

\$ MATCH (p:Person)-[:DRIVES]->(:Car), (p)<-[:BRIEFED]-(:Lawyer), (p)<-[:EXAMINED]-(:Doctor), (p)-[w:WITNESSED]->(:Car), (p)-[pi:PASSEN...

Fraudsters

MATCH (p:Person)-[:DRIVES]->(:Car), (p)<-[:BRIEFED]-(:Lawyer), (p)<-[:EXAMINED]-(:Doctor), (p)-[w:WITNESSED]->(:Car), (p)-[pi:PASSENGER_IN]->(:Car) WITH p, count(w) AS noWitnessed, count(pi) as noPassengerIn WHERE noWitnessed > 1 OR noPassengerIn > 1 RETURN p

Auto-fraud Graph

- Once you have the fraudsters, finding their support team is easy.
 - (fraudster) <- [:EXAMINED] (d:Doctor)</pre>
 - (fraudster) <- [:BRIEFED] (l:Lawyer)
- And it's also easy to find their passengers
 - (fraudster)-[:DRIVES]->(:Car)<-[:PASSENGER_IN]-(p)</pre>
- And easy to find other places where they've maybe committed fraud
 - (fraudster) [:WITNESSED] -> (:Car)
 - (fraudster)-[:PASSENGER_IN]->(:Car)
- And you can see this in milliseconds!

Online Payments Fraud (First-Party)

- Stealing credentials is commonplace
 - Phishing, malware, simple naïve users
- Buying stolen credit card numbers is easy
- How should one protect against seemingly fine credentials?
- And valid credit card numbers?

We are all little stars

- Username and passwords
- Two-factor auth
- IP addresses, cookies
- Credit card, paypal account
- Some gaming sites already do some of this
- Arts and Crafts platform Etsy already embraced the idea of graph of identity

An Individual Identity Subgraph

We are all made of stars...

An Individual Login History

From 1st to 3rd Party

- The 1st party identity graph can easily be extended to 3rd party fraud
- Like in the bank fraud ring, fraudsters can mix-n-match claims
- Start with a few phished accounts and expand from there!

Graphing Shared Connections

Scan for Potential Fraudsters

MATCH (u1:User)--(x)--(u2:User)
WHERE u1 <> u2 AND NOT (x:IP)
Network in
common is OK
RETURN x

Stop specific fraudster network, quickly

MATCH path = (u1:User {username: 'Jim'}) - [*] - (x) - [*] - (u2:User) WHERE u1<>u2 AND NOT (x:IP) AND NOT (x:User) ± 2 0 S MATCH path = (u1:User {username: 'Jim'})-[*]-(x)-[*]-(u2:User) WHERE u1⇔u2 AND NOT (x:IP) AND NOT (x:User) RETURN path RETURN path *(4) Cookie(1) CreditCard(1) User(2) ی Graph *(3) OWNS(2) PROVIDED(1) Ħ Rows day of the second secon AUTO-COMPLETE ON Displaying 4 nodes, 3 relationships.

How do these fit with traditional fraud prevention?

Gartner's Layered Fraud Prevention Approach

Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
Endpoint- Centric	Navigation- Centric	Account- Centric	Cross- Channel	Entity Linking
Analysis of users and their endpoints	Analysis of navigation behavior and suspect patterns	Analysis of anomaly behavior by channel	Analysis of anomaly behavior correlated across channels	Analysis of relationships to detect organized crime and collusion

http://www.gartner.com/newsroom/id/1695014

Master Data Management

- Provide high quality, joined up data to the right process at the right time
- Bridge silos, leverage all data (including legacy)
- Database point of view: fancy indexes
- Graph database point of view: a Web of data
 - Multidimensional, path-centric index

Master Data Management Examples

- Adidas: Shared Metadata Service
 - 360 degree view of data via the graph
 - Without disturbing existing (valuable) systems!
- ICE: Global directory for participants, market makers, investment funds etc.
 - Futures and trading house
 - Social network for brokers
 - Recommendations for the right broker means more business!
 - Recommendations are trivial in a graph
- Pitney Bowes productised platform on top of Neo4j
 - Materially affected their stock rating
 - http://www.zacks.com/stock/news/157741/pitney-bowes-selects-neo4j-to-developgraphbased-mdm

Easy Recommendations: Triadic Closure

http://www.isciencemag.co.uk/blog/are-you-a-social-network-junkie/

Triadic Closure (1)

Triadic Closure (2)

Easy Global Query

```
MATCH (me:Trader)-[:TRUSTS]-
                      (:Trader)-[:TRUSTS]-(you:Trader)
WHERE me <> you AND NOT me-[:TRUSTS]-(you)
WITH me, you
MERGE (me)-[:TRUSTS]->(you)
RETURN me, you
```

Or Super-fast Local Query


```
MATCH (me:Trader name:'Ed')-[:TRUSTS]-
                (:Trader)-[:TRUSTS]-(you:Trader)
WHERE me <> you AND NOT me-[:TRUSTS]-(you)
WITH me, you
MERGE (me)-[:TRUSTS]->(you)
RETURN me, you
```

Side note: Triadic Closures Predict WWI

[Easley and Kleinberg]

(a) Three Emperors' League 1872– 81

(b) Triple Alliance 1882

- GB AH Fr Ge Ru It
- (c) German-Russian Lapse 1890

(d) French-Russian Alliance 1891– 94

(e) Entente Cordiale 1904

(f) British Russian Alliance 1907

What has this to do with stopping fraud?

- Recommendations are a positive version of anti-recommendations
- Identifying fraud is an anti-recommendation
- So you can use triadic closure to try to identify networks of fraudsters and their targets via transitive relations

Provenance

- Banks are awash with data
 - And spend a lot of time moving and transforming it
- Where did **this** data come from?
 - Compliance and auditors want to know
- How do I show how this data got computed/transformed/moved?

Detailed Provenance

MATCH (:Server {id: 2}) - $[r^*]$ - (x) RETURN x, r

Ç.	r			x	1	
Rows	[location	smb://mylaptop/temp/important-report.xml		id content	1 <foo></foo>
	[location	smb://mylaptop/temp/important-report.xml		id 0	
]	query method	SELECT * FROM ACCOUNT JDBC			
]				id 5	

SWISS LEAKS: MURKY CASH SHELTERED BY BANK SECRECY

ICIJ

Support global collaborative journalism. Click here to donate to

Tweet 1,056

🖬 Like < 1.6k

Poor Governance needs Good Graphs

- The Swissleaks episode caused substantial reputational harm to HSBC
 - Loss of revenue, legal costs
- Banks live and die on having a trustworthy reputation
- Compliance officers are overwhelmed by volume and traditional methods

Good data, Great Journalism

- Swissleaks may have been great journalism
 - It was! They're heroes.
- But the tools that used could have been used to stop illegal behaviour long before it reached the press
- Neo4j **should** be used by every compliance office in every bank
- The ICIJ is like Jepsen for businesses.
- You should run the tools on your business before they do it for you!

Thanks for listening

@jimwebber

