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An Unbounded Stream of Game Events
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… with unknown delays.
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The Resource Allocation Problem
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Matching Resources to Workload
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Resources = Parallelism
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More generally: VMs (including CPU, RAM, network, IO).



Assumptions

Big Data Problem

Embarrassingly Parallel

Scaling VMs ==> Scales Throughput

Horizontal Scaling



Agenda

Streaming Dataflow Pipelines

Pipeline Execution

Adjusting Parallelism Automatically

Summary + Future Work
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Streaming Dataflow1
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Google’s Data-Related Systems



Google Dataflow SDK

Open Source SDK used to construct a Dataflow pipeline.

(Now Incubating as Apache Beam)



Computing Team Scores

// Collection of raw log lines
PCollection<String> raw = ...;

// Element-wise transformation into team/score
// pairs
PCollection<KV<String, Integer>> input =

raw.apply(ParDo.of(new ParseFn()))

// Composite transformation containing an
// aggregation
PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(Minutes(60))))
.apply(Sum.integersPerKey());



Google Cloud Dataflow

● Given code in Dataflow (incubating as Apache Beam) 

SDK...

● Pipelines can run…

○ On your development machine

○ On the Dataflow Service on Google Cloud Platform 

○ On third party environments like Spark or Flink. 



Cloud Dataflow

A fully-managed cloud service and 

programming model for batch and 

streaming big data processing.

Google Cloud Dataflow



Google Cloud Dataflow

Optimize

Schedule

GCS GCS
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Back to the Problem at Hand



Signals measuring Workload 

Policy making Decisions

Mechanism actuating Change

Auto-Tuning Ingredients



Pipeline Execution2
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Queues of Data Ready for Processing

Queue Size = Backlog



vs.
Backlog Growth

Backlog Size 



Backlog Growth
=

Processing Deficit



S1

Derived Signal: Stage Input Rate

throughput

Input Rate = Throughput + Backlog Growth

backlog growth



Constant Backlog... 

...could be bad



Backlog Time =
Backlog Size

Throughput



Backlog Time =
Time to get through backlog



Bad Backlog = Long Backlog Time



Backlog Growth
and

Backlog Time
Inform Upscaling.

What Signals indicate 
Downscaling?



Low CPU Utilization



Throughput

Backlog growth

Backlog time

CPU utilization

Signals Summary



Goals:
1. No backlog growth
2. Short backlog time
3. Reasonable CPU utilization

Policy: making Decisions



Upscaling Policy: Keeping Up

Given M machines

For a stage, given:

average stage throughput T

average positive backlog growth G of stage

Machines needed for stage to keep up:

(T + G)

T
M’ = M



Upscaling Policy: Catching Up

Given M machines

Given R (time to reduce backlog)

For a stage, given:

average backlog time B

Extra machines to remove backlog:

B

R
Extra = M



Upscaling Policy: All Stages

Want all stages to:

1. keep up

2. have log backlog time

Pick Maximum over all stages of  M’ + Extra



Example (signals)
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Example (policy)
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Preconditions for Downscaling

Low backlog time

No backlog growth

Low CPU utilization



How far can we 
downscale?

Stay tuned...



Adjusting Parallelism of a 
Running Streaming Pipeline

Mechanism: actuating Change
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Optimized Pipeline = DAG of Stages

Machine 0



Adding Parallelism
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Adding Parallelism
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Adding Parallelism = Splitting Key Ranges
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Migrating a Computation



Adding Parallelism = Migrating Computation Ranges
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Checkpoint and Recovery
~

Computation Migration



Key Ranges and Persistence
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Downscaling from 4 to 2 Machines
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Downscaling from 4 to 2 Machines
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Downscaling from 4 to 2 Machines
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Downscaling from 4 to 2 Machines
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Upsizing  = Steps in Reverse



Granularity of Parallelism

As of March 2016, Google Cloud Dataflow:

• Splits Key Ranges initially Based on Max Machines

• At Max: 1 Logical Persistent Disk per Machine

Each disk has slice of key ranges from all stages

• Only (relatively) even Disk Distributions

• Results in Scaling Quanta



Parallelism Disk per Machine

3 N/A

4 15

5 12

6 10

7 8, 9

8 7, 8

9 6, 7

10 6

12 5

15 4

20 3

30 2

60 1

Example Scaling
Quanta: 
Max = 60 Machines



Goals:
1. No backlog growth
2. Short backlog time
3. Reasonable CPU utilization

Policy: making Decisions



Preconditions for Downscaling

Low backlog time

No backlog growth

Low CPU utilization



Next lower scaling quanta => M’ machines

Estimate future CPUM’ per machine:  

If new CPUM’ < threshold (say 90%), 

downscale to M’

Downscaling Policy

M

M’
CPUM’ =        CPUM



Summary +
Future Work
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Artificial Experiment



Auto-Scaling Summary

Signals: throughput, backlog time,
backlog growth, CPU utilization

Policy: keep up, reduce backlog,
use CPUs

Mechanism: split key ranges, 
migrate computations



• Experiment with non-uniform disk distributions to 

address hot ranges

• Dynamically splitting ranges finer than initially done.

• Approximate model of  #VM - throughput relation

Future Work



Questions?

Further reading on streaming model: 

The world beyond batch: Streaming 101

The world beyond batch: Streaming 102

http://radar.oreilly.com/2015/08/the-world-beyond-batch-streaming-101.html
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

