

Streaming Auto-Scaling in Google Cloud Dataflow

Manuel Fahndrich

Software Engineer Google

Individual Ranking

Sarah	151,365
Joe	109,903
Milo	98,736
	•

- •
- .

Team Ranking

- -

Hourly Ranking

- .
- •
- •
- •

Daily Ranking

- -
- •
- -

An Unbounded Stream of Game Events

8:00 1:00 9:00 2:00 10:00 3:00 11:00 4:00 12:00 5:00 13:00 6:00 14:00 7:00

... with unknown delays.

The Resource Allocation Problem

Matching Resources to Workload

Resources = Parallelism

More generally: VMs (including CPU, RAM, network, IO).

Assumptions

Big Data Problem

Embarrassingly Parallel

Scaling VMs ==> Scales Throughput

Horizontal Scaling

Agenda

Streaming Dataflow

Google's Data-Related Systems

Google Dataflow SDK

Open Source SDK used to construct a Dataflow pipeline.

(Now Incubating as Apache Beam)

Computing Team Scores

// Collection of raw log lines
PCollection<String> raw = ...;

// Element-wise transformation into team/score
// pairs
PCollection<KV<String, Integer>> input =
 raw.apply(ParDo.of(new ParseFn()))

// Composite transformation containing an
// aggregation
PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(Minutes(60))))
.apply(Sum.integersPerKey());

Google Cloud Dataflow

- Given code in Dataflow (incubating as Apache Beam)
 SDK...
- Pipelines can run...
 - On your development machine
 - On the Dataflow Service on Google Cloud Platform
 - On third party environments like Spark or Flink.

Google Cloud Dataflow

A fully-managed cloud service and programming model for batch and streaming big data processing.

Back to the Problem at Hand

Auto-Tuning Ingredients

Signals measuring Workload

Policy making Decisions

Mechanism actuating Change

Pipeline Execution

Optimized Pipeline = DAG of Stages

Stage Throughput Measure

Queues of Data Ready for Processing

Queue Size = Backlog

Backlog Size vs. Backlog Growth

Backlog Growth = Processing Deficit

Derived Signal: Stage Input Rate

throughput backlog growth

Input Rate = Throughput + Backlog Growth

Constant Backlog...

...could be bad

$\frac{\text{Backlog Time}}{\text{Throughput}} = \frac{\text{Backlog Size}}{\text{Throughput}}$

Backlog Time = Time to get through backlog

Bad Backlog = Long Backlog Time

Backlog Growth and Backlog Time Inform Upscaling.

What Signals indicate Downscaling?

Low CPU Utilization

Signals Summary

Throughput Backlog growth Backlog time CPU utilization

Policy: making Decisions

Goals: 1. No backlog growth 2. Short backlog time 3. Reasonable CPU utilization

Upscaling Policy: <u>Keeping</u> Up

Given *M* machines

For a stage, given: average stage throughput *T* average positive backlog growth *G* of stage

Machines needed for stage to keep up:

$$M' = M \frac{(T+G)}{T}$$
Upscaling Policy: <u>Catching</u> Up

Given *M* machines Given *R* (time to reduce backlog)

For a stage, given: average backlog time **B**

Extra machines to remove backlog:

 $Extra = M \frac{B}{R}$

Upscaling Policy: <u>All Stages</u>

Want all stages to: 1. keep up 2. have log backlog time

Pick Maximum over all stages of M' + Extra

seconds

Time

Time

Time

seconds

Time

Time

machines

Time

machines

Time

Time

machines

Preconditions for Downscaling

Low backlog time No backlog growth Low CPU utilization

How far can we downscale?

Mechanism: actuating Change

Adjusting Parallelism of a Running Streaming Pipeline

Optimized Pipeline = DAG of Stages

Optimized Pipeline = DAG of Stages

Optimized Pipeline = DAG of Stages

Adding Parallelism

Adding Parallelism

Adding Parallelism = Splitting Key Ranges

Migrating a Computation

Adding Parallelism = Migrating Computation Ranges

Checkpoint and Recovery ~ Computation Migration

Key Ranges and Persistence

📀 Google Cloud Platforn

Upsizing = Steps in Reverse

Granularity of Parallelism

As of March 2016, Google Cloud Dataflow:

- Splits Key Ranges initially Based on Max Machines
- At Max: 1 Logical Persistent Disk per Machine Each disk has slice of key ranges from all stages
- Only (relatively) even Disk Distributions
- Results in Scaling Quanta

Example Scaling Quanta: Max = 60 Machines

Parallelism	Disk per Machine
3	N/A
4	15
5	12
6	10
7	8, 9
8	7, 8
9	6, 7
10	6
12	5
15	4
20	3
30	2
60	1

Policy: making Decisions

Goals: 1. No backlog growth 2. Short backlog time 3. Reasonable CPU utilization

Preconditions for Downscaling

Low backlog time No backlog growth Low CPU utilization

Downscaling Policy

Next lower scaling quanta => *M*' machines

Estimate future $CPU_{M'}$ per machine: $CPU_{M'} = \frac{M}{M'} CPU_{M}$

If new $CPU_{M'}$ < threshold (say 90%), downscale to M'

Summary + Future Work

Artificial Experiment

Auto-Scaling Summary

Signals: throughput, backlog time, backlog growth, CPU utilization

Policy: keep up, reduce backlog, use CPUs

Mechanism: split key ranges, migrate computations

Future Work

- Experiment with non-uniform disk distributions to address hot ranges
- Dynamically splitting ranges finer than initially done.
- Approximate model of #VM throughput relation
Questions?

Further reading on streaming model:

The world beyond batch: Streaming 101

The world beyond batch: Streaming 102

