
Quick poll…

Welcome to sunny London!

Tammer Saleh

Geek: Unix, Ruby, Golang, etc

Cloud Foundry @ Pivotal

http://tammersaleh.com | tsaleh@pivotal.io

Microservice
Anti-patterns

How not to go down in flames.

Why microservices?
What is a microservice, and why do I care?

Monolithic

Entire application in a single codebase,
deployed and scaled as a single unit.

Monolithic

Hard to scale the application.
Impossible to scale the team.

It’s not about code… It’s about teams.

But it can go wrong.
Here are the most common problems we

see in the wild, and how to fix them.

Overzealous Services
The most common

mistake is to
start with

microservices

Boring is Beautiful™

Solution: Start monolithic and extract

Microservices are complex and add a constant tax to development.

Build a boring application and extract services as needed.

Twitter

/tweet

/dashboard

/…

/…

Heavy and Expensive

/tweet

Twitter

/dashboard

/…

/…

Lite and Cheap

Congratulations
You’re now a microservice architect.

Schemas everywhere

/dashboard

/…

/…

/tweet v1

v1

V1 Schema

Deploy v2

Schemas everywhere

/dashboard

/…

/…

/tweet v1

v2

V1 Schema

Deploy v2

Migrate v2

/dashboard

/…

/…

/tweet v1

v2

V2 Schema

Deploy v2

Schemas everywhere

Migrate v2

/dashboard

/…

/…

/tweet v2

v2

V2 Schema

Schemas everywhere

Solution: Gatekeeper

/dashboard

/…

/…

/tweet v1

v2

Tweets

/bulk_add

Tweet Service

GET /tweets

GET /tweets/ID

Owns database and migrations

Lock-step deployment

Service B

Service A

Service C — v1

v1

v1

Lock-step deployment

Service B

Service A

Service C — v2

v1

v1

Deploy v2

Lock-step deployment

Service B

Service A

Service C — v2

v1

v1

Deploy v2

Lock-step deployment

Service B

Service A

Service C — v2

v2

v2

Deploy v2

Solution: Semantic Versioning

Service B

Service A

Service C — v1

v1

v1

vMajor.Minor.Patch
MYBAD.SHINY.OOPS

Solution: Semantic Versioning

Service B

Service A

Service C — v1.2

v1

v1

Deploy v1.2
(extra stuff)

:)

:)

Solution: Semantic Versioning

Service B

Service A

Service C — v1.2

v1.2

v1.2

Deploy v1.2

Solution: Semantic Versioning

Service B

Service A

Service C — v1.2

v1.2

v1.2

Deploy v2
(breaking change)

Service C — v2

Solution: Semantic Versioning

Service B

Service A

Service C — v1.2

v1.2

v2
Service C — v2

Deploy v2

Solution: Semantic Versioning

Service B

Service A

Service C — v1.2

v2

v2
Service C — v2

Deploy v2

OMG ALL THE STEPS!!!

See Rule #1

Spiky load between services

Must maintain enough servers to handle peak load.

/tweet

/dashboard

/…

/…

Spiky load between services

/tweet

/dashboard

/…

/…

Spiky load between services

Queues in between services provide buffers that smooth traffic.

Solution: Amortize via queues

Peak load is now much lower.

/tweet

/dashboard

/…

/…

Solution: Amortize via queues

Solution: Amortize via queues
/tweet

/dashboard

/…

/…

Worker

Complexity: Now clients must deal with asynchronous responses.

Hardcoded IPs and Ports

Simple to get started, but immediately leads to deployment issues.

Solution 1: Discovery Service

etcdconsul

Solution 1: Discovery Service

Service A

Service B
(192.168.0.2:1234)

Where is B?

192.168.0.2:1234

Solution 1: Discovery Service

Service A

Service B
(192.168.0.2:1234)

Hey there!

Solution 1: Discovery Service

Complexity: Your code must understand the service lookup system.

Solution 2: Centralised router

Service AService B

Router

Service B Service A Service AService B

A A BB A A BBA A BB

Solution 2: Centralised router

Simplicity: “It’s just DNS.”

Router vs Discovery Service

Both require service registration.

Discovery Service is simpler to build
and scale, since it doesn’t need to

route all data.

Discovery service does fewer
network hops.

Router is transparent.

Router can be exposed externally.

Router can cache transparently.

Router can round-robin.

Both require HA and scalability.

Dogpiles

Service BService A

You there?

No.

How about now?

I’m busy.

But I wanna chat!

Go away

Whachya doin?

Please leave me alone.

Wanna be friends?

I hate you.

Dogpiles

Service B

Service A Service A

Service A Service A

x 100

Solution: Circuit Breaker

Service B

Service A Service A

Where’s B?

B’s sick. Wait 10 min.

Hello!

Go to Hell!

Hey, B’s sick :(

Debugging hell
Turns out, distributed systems are hard.

Debugging Hell

Service 3

Service 1 Service 2

time:1428374783 source:service3 msg:”Error with payment!”

Where?? Why?? Who??

Solution: Correlation IDs

Service

Service Service
CID: 1234 CID: 1234 C

ID
: 1234

time:1427127483 source:service1 id:1234 msg:”Received request…”
time:1427348748 source:service2 id:1234 msg:”Processing payment"
time:1428374783 source:service3 id:1234 msg:”Error with payment!”

Solution: Correlation IDs
1. Tag all incoming requests with

unique ID

2. Service saves ID for all incoming
requests

3. Include that ID in all log lines,
etc.

4. Tag new requests with that ID

ServiceLogs
ID

ID

ID

ID

Complexity: Must be done manually.

Missing Mock Servers
Each consuming team has to create

their own mocks and stubs.

Missing Mock Servers

Service A

Team A

Missing Mock Servers

Service A Service B
HTTP

Team A Team B

Product Surface Area

Missing Mock Servers

Service A Service B
HTTP

Mock of Service A

H
TT

P

Team A Team B

For each service…
For each team…

Service A Service B
HTTP

Mock of Service A

HTTP

Team A Team B

Better…Solution: Service Team Provides the Mock

Team B still needs to know
how to run Mock Service A

Solution: Service Team Owns the Client

Service A Service B
HTTP

HTT
P

Team A Team B

Client A

MOCK=“true”

Best…

Mock of Service A

Product Surface Area

Both modes are tested in CI

Team A can change
the protocol as they see fit

Flying Blind

Solution: Graphs, alerts, pages.

Solution: Graphs, alerts, pages.

Alerting Rules EnginePlatform Events

OMGWAT???AppsAppsAppsAppsAppsAppsAppsAppsAppsAppsApps

Snowflakes

Snowflakes

Ruby XSS exploit!

BASH remote exploit!

Snowflakes

Containers

Virtual Machines

Solution: Golden Image

Solution: Golden Image

Golden OS Image

Common Runtimes
and Frameworks

+
Base Platform

=

Doomsday Deployments

Solution: Predictable Pipelines

Solution: Predictable Pipelines

http://concourse.ci

http://concourse.ci

Solution: Predictable Pipelines

Need to trust your tests, your
platform, and your automation.

Operational Explosion!

Operational Explosion!
Operations block Development

Solution: AUTOMATE ALL THE THINGS!!!!!

Form a team to build tools that enable developers to
manage the system in an entirely automated way.

OMG ALLTHETHINGS????
App deployment, infrastructure provisioning, OS installation,
configuration management, database provisioning, disaster
recovery, application monitoring, HA, blue-green deployments,
self-healing, scaling, runtime installation, log rotation, backups, security
updates, database upgrades, application logs, system logs, database
logs, continuous integration, continuous deployment, service discovery,
monitor queue usage, security monitoring, hotspot detection, error monitoring,
issue notification and escalation, virtual machine migration, shard rebalancing,
circuit breaker monitoring, resiliency testing, database snapshots, flux capacitors,
ion overdrive maintenance, change the oil, dog feeding, cat shooting, pig eating…

Time and Money

Solution: AUTOMATE ALL THE THINGS!!!!!

In summary…
Start boring and extract to services.

Understand the hidden schemas.

Amortize traffic with queues.

Decouple through discovery tools.

Contain failures with circuit breakers.

Enable other teams through mockable
clients.

Kill your snowflakes.

Automate your deployments.

Build in operations tools from the beginning.

Make use of a platform like Cloud Foundry.

