
#qconlondon

The Case for Bringing Swift to the Server
Patrick Bohrer, Chris Bailey
IBM Cloud

Agenda

• Why does this matter ?
• Swift Background
• What does it take to really support Swift on Linux ?
• What does it take to really support Swift on the Cloud ?
• Developer Resources for Innovators and Early Adopters

2

3

Why do we care if a mostly
mobile dev language is now

available on the server ?
Hint: Building new mobile

experiences drive new cloud
requirements

4

A little bit about me

Systems à Mobile à Cloud à Swift

5

Hypervisors

Operating
Systems

Compilers
Debuggers

Performance
Modeling

JITs

C language

System
Simulators

Functional Verification

Caching

Memory

CPUs/Threads

Multithreading

Pre-2008: My Systems Years

Latency vs BW

CPU vs Memory

6

Then This Happened
The iPhone App Store

opened on July 10, 2008

7

Me (2009)

Everything
Else

8

New Experience exposed Capabilities Mismatch

9

Legacy Sys Mgmt Usage:
• Infrequent Use
• 20 minute usage minimum
• High latency
• Unlimited Network
• Large data payloads
• Sensor/trigger data treated

same as other data
Client layer:
• Latency Hiding
• Smart Caching
• Lazy Loading
• Add Liveness
• Async Everything

Mobile Usage:
• Frequent Use
• Short (~30 sec) Usage Cycle
• Low Latency
• Precious Network BW
• Prioritize alerting flow
• Drill down data requirements

Guess what ? They Love it and Want More!
• Share across my devices
• Slightly different experience for each device
• Background monitoring
• Collaborate with co-workers (social)
• Warranty Lookup
• Notification of firmware updates
• …

!

✓

Compelling Mobile Experiences Create Need for new
Cloud Services

11

• Simple mobile experience led to much more involved solution
• Middle tier services built to deliver demands of new mobile experience
• I knew what my mobile clients needed and had to switch roles/gears

to delivery capabilities across stack/languages (Obj-C à NodeJS à
C/Java)

CloudClient

IBM Services

On-prem

User Experience
Across Devices Always-on Cloud Legacy Services

• Latency Hiding
• Multi-device synchronization
• User identity
• Social graphing
• Secure data synchronization
• Background monitoring
• Push notifications
• Business process mgmt services
• Service composition

Cloud

Evolution of Enterprise Applications: Data Model Contrast
On-PremClient

Java Application
Server

Database

Tier
Attributes

Dev Skills

DataLogic

Storage

Native Mobile
“Apps”

2nd Gen Hybrid
Mobile “Apps”

Tiers

• State-full
• Significant App Logic
• Real-time
• Eventual Consistency
• Disconnected Use
• Sometimes on
• Limited CPU/Mem/BW

SPA Web
“Apps”

• Event-driven
• Low latency
• High volume
• Request composition
• API Driven
• Always On
• Infinite CPU/Mem/Network

• Transactional
• Session based
• Lower Volume

New
Experiences
are drawing

logic and
data closer

to users

• Objective-C
• Swift
• Java
• Javascript

• Javascript
• Java
• Python
• NoSQL, In-Mem

DBs, Obj Store, etc

• Java
• J2EE
• SQL DB

TV “Apps”

Smart Things,
Wearables

Interactive Logic
(NodeJS, Java)

Persistence
(Redis, MongoDB, Cloudant,
Elastic Search, SQL)

Other Services
(Facebook, Google,
Paypal, Stripe, etc)

Logic and Data Moving Closer to Users

13

Not unique to me or my app

Mobile Drives Cloud Demand
We have seen this same pattern
emerge in the apps we have built
since these days. Many of these

new apps (including the
Apple/IBM Partnership apps) are

now written in Swift

Swift Background
Created by Apple
Created by team at Apple by Chris Lattner (creator of LLVM) and team to replace Objective C. Strongly
influenced from languages like “Objective-C, Rust, Haskell, Ruby, Python, C#, CLU, and far too many
others to list”.
Strongly typed, concise syntax, and modern language features.
Swift Programming Language
Apple released the Swift language for iOS and OS X development at WWDC 2014. Swift is the strategic
language for the future of Apple ecosystem development. Swift is industrial-quality systems programming
language that blends the expressiveness and ease of found in scripting languages. Within a year, Swift
has emerged as one of the top programming languages. Swift, released in June 2014, just broke the top
20, now at 18, on RedMonk’s Programming Language Rankings: June 2015.
Technical Background
Swift leverages Apple’s language architecture. The language parser is built on the LLVM compiler
infrastructure. LLVM is the layered backend compiler infrastructure used for intermediate code
generation, profiling, debugging, and instrumentation. All Apple supported languages including C, C++,
Objective-C, and JavaScript are based on LLVM.
Open Source Swift
Apple open sourced Swift on December 3, 2015. It includes support for Linux, Swift language parser and
integrated LLVM infrastructure, integrated LLVM LLDB debugger, integrated Read/Eval/Print Loop
(REPL) interactive command line tool, Swift Package Manager, Libdispatch (Grand Central Dispatch),
Foundation and the Swift Standard Library.

14

Growth in Swift Popularity

15

2014 2015

Surging Github Popularity
within 2 months compared to other popular languages

16

Developer Empowerment in the Cloud

17

11 Million Registered Apple
Developers in 2015

Stackoverflow Questions Hint at
Conversion Trend from ObjC à Swift

Swift caters to an incredibly affluent and growing community of developers. These developers
are creating applications that are literally changing the way we all live our lives.

These applications are dependent upon the Cloud to delivery these experiences.

The open sourcing of the language and will now open opportunities around language adoption
across servers and other client platforms.

Empowering New Client-side Development
Community

18

Hybrid / Web App
Development

NodeJS Empowered
Web-based Developers

in the Cloud

Swift App Development

Empower Swift
Developers in Cloud

and On-premises

19

What does it take to bring a new
language to the Server ?

Hint: Base Runtime,
Foundation, Concurrency,

Debugging, Instrumentation,
Performance, IDE support,

à Viable Runtime

IBM Runtime Technologies

@Chris__Bailey

@seabaylea

chrisbaileyibm

Senior Technical Staff Member

About Me

About Me

About Me

About Me

Lessons to be learned from NodeJS Timeline

25

We are here

Many differences in the languages
but insights can be gained by
looking at a similar community
driven development timeline.

V8 Release
(2008)

+ libuv (concurency)
+ foundation
= NodeJS
(2009)

+ npm
(2009-2011)

Initial Popularity
(2012-2013)

Mainstream Usage
(2014-2015)

Swift Release
(Late 2015)

+ libdispatch
(concurency)
+ Foundation
+ web foundation
(Kitura)
= ??
(Early 2016)

+ swift pkg mgr
+ catalog
(? 2016)

Package Growth
(2012)

Package Growth
(2016-2017)

Mainstream Usage
(??)

+ Express: betaà1.0
(Web Framework)
(2009-2010)

+ Kitura: alphaà1.0
(Web Framework)
(2016-?)

Initial Popularity
(??)

Lessons to be learned from NodeJS Timeline

26

V8 Release
(2008)

+ libuv (concurency)
+ foundation
= NodeJS
(2009)

+ npm
(2009-2011)

Initial Popularity
(2012-2013)

Mainstream Usage
(2014-2015)

Swift Release
(Late 2015)

+ libdispatch
(concurency)
+ Foundation
+ web foundation
(Kitura)
= ??
(Early 2016)

+ swift pkg mgr
+ catalog
(? 2016)

Package Growth
(2012)

Package Growth
(2016-2017)

Mainstream Usage
(??)

+ Express: betaà1.0
(Web Framework)
(2009-2010)

+ Kitura: alphaà1.0
(Web Framework)
(2016-?)

Initial Popularity
(??)

Swift.org Contributions

Sandbox

Status Quo
Still early days
• Language evolution (1.0 à 2.0 à 3.0 à 4.0) currently at 2.2 à 3.0

New:
• Swift Package Manager:

• Being developed by Max Howell (creator of Homebrew on Mac)

New on Linux (Still in progress)
• Libdispatch (Concurrency)
• Foundation (Objective-C library on iOS/OSX à Pure Swift)

27

Concurrency Implementation

Grand Central Dispatch (“Dispatch”)
• Efficiently provides execution services, resource management, QoS, event sources, etc.
• Dispatch Queues: serial or concurrent execution queues
• Dispatch Sources: register callbacks to execute on system events
• Dispatch Groups: allows tasks to be grouped and joined when complete

28

for task in 0...NTASKS-1 {
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

Concurrency Implementation

Grand Central Dispatch (“Dispatch”)
• Efficiently provides execution services, resource management, QoS, event sources, etc.
• Dispatch Queues: serial or concurrent execution queues
• Dispatch Sources: register callbacks to execute on system events
• Dispatch Groups: allows tasks to be grouped and joined when complete

29

for task in 0...NTASKS-1 {
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

import Dispatch

let dq = dispatch_queue_create(“tasks”,
DISPATCH_QUEUE_CONCURRENT)

Concurrency Implementation

Grand Central Dispatch (“Dispatch”)
• Efficiently provides execution services, resource management, QoS, event sources, etc.
• Dispatch Queues: serial or concurrent execution queues
• Dispatch Sources: register callbacks to execute on system events
• Dispatch Groups: allows tasks to be grouped and joined when complete

30

for task in 0...NTASKS-1 {
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

import Dispatch

let dq = dispatch_queue_create(“tasks”,
DISPATCH_QUEUE_CONCURRENT)

dispatch_apply(dq, NTASKS { task in
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

Concurrency Implementation

Grand Central Dispatch (“Dispatch”)
• Efficiently provides execution services, resource management, QoS, event sources, etc.
• Dispatch Queues: serial or concurrent execution queues
• Dispatch Sources: register callbacks to execute on system events
• Dispatch Groups: allows tasks to be grouped and joined when complete

31

for task in 0...NTASKS-1 {
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

import Dispatch

let dq = dispatch_queue_create(“tasks”,
DISPATCH_QUEUE_CONCURRENT)

dispatch_apply(dq, NTASKS { task in
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

Language Duration (s) CPU Time CPU Load
Swift (Dispatch) 13.60 51.44 100% 86% 100% 93%

Swift (Serial) 51.00 50.99 1% 0% 0% 100%

Concurrency Implementation

Grand Central Dispatch (“Dispatch”)
• Efficiently provides execution services, resource management, QoS, event sources, etc.
• Dispatch Queues: serial or concurrent execution queues
• Dispatch Sources: register callbacks to execute on system events
• Dispatch Groups: allows tasks to be grouped and joined when complete

32

for task in 0...NTASKS-1 {
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

import Dispatch

let dq = dispatch_queue_create(“tasks”,
DISPATCH_QUEUE_CONCURRENT)

dispatch_apply(dq, NTASKS { task in
let f = Fannkuchredux(n: n);
f.runTask(task, Fact: Fact, CHUNKZ: CHUNKZ);
chkSums[task] = f.chkSums;
maxFlips = f.maxFlips;

}

Language Duration (s) CPU Time CPU Load
Swift (Dispatch) 13.60 51.44 100% 86% 100% 93%

Swift (Serial) 51.00 50.99 1% 0% 0% 100%

IBM has contributed 37 or 40 pull requests to Dispatch

Swift Standard Library and Foundation

Swift and the Swift Standard Library:
• Dispatch integration as a first class citizen
• Support for Linux PPC64 LE
• print() performance

Core Foundation and Foundation:
• NSJSONSerialization
• NSRegularExpression
• NSBundle
• NSNumber
• NSNumberFormatter
• NSJSONSerialization
• CFRunLoop and NSRunLoop

33

NSRunLoop

Higher level abstraction for asynchronous handling of events from:
• Input Sources: System events or custom events
• Timer Sources: Scheduled events

34

What Next?

Continue to contribute Swift implementations of Foundation APIs
• NSOperationQueue
• NSURLSession
• NSStream

Foundational “Server” APIs
• Server sockets
• HTTP parsing
• SSL and TLS support

Enterprise requirements
• FIPS compliance
• Transaction processing framework(s)

Enterprise non-functional requirements
• Runtime monitoring, clustering and auto-scaling
• Post-failure diagnostics
• Performance and scalability
• Alternative memory management algorithms

35

36

What does it take to bring a new
language to the Cloud ?

Hint: Server Support + Web
Foundation, Web Frameworks,
Cloud Runtimes, Rich Package

Ecosystem, Enhanced Developer
Experience, Activity Dev

Community
à Developer Value & Buy-in

37

Kitura Web Framework

What is it?
New, modular, package-based web framework written in
Swift

Why is this cool?
Empower a new generation of native mobile developers to
write and deploy code into the Cloud.

Developer Benefits ?
Delivers core technologies needed to stand up enterprise
apps on the server

Enables developers to create a web application in Swift and
deploy these servers on Linux and the Cloud.

http://github.com/ibm-swift/kitura

38

Web Framework

Web Framework
Source

C Helpers
& Interfaces

Swift Libraries

SwiftyJSON
SwiftMongoDB

Swift Binary

Foundation
Package Manager

C Libraries

Dispatch
HttpParser
HiRedis
CURL
PCRE2

Pluggable
Components

39

Web Framework Core Modules

KituraRouter

KituraNet

KituraIO

KituraSys

KituraRegex

40

router.get("/hello") { (request: RouterRequest,
response: RouterResponse,
next: () -> Void) in

let json = JSON([“world”: “From Swift”, “version”: 1])
response.status(HttpStatusCode.OK).sendJson(json)
do {

try response.end()
}
catch {}
next()

}

Web Framework App Sample Code

41

import SwiftCouchDB

import SwiftyJSON

import Foundation

let server = CouchDBServer(ipAddress: configuration!["ipAddress"] as! String,
port: Int16(configuration!["port"]!.integerValue))

let dbName = configuration!["db"] as! String

let database = server.db(dbName)

router.get("/photos") { (request: RouterRequest, response: RouterResponse,
next: ()->Void) in

database.queryByView("sortedByDate", ofDesign: "photos",
usingParameters: [.Descending(true)])

{ (document, error) in
guard error == nil else {

response.error = error!
next()
return

}

if let document = document {
respond(response, withJSON: parsePhotosList(document),

withStatus: HttpStatusCode.OK, orSetError: "Internal
error")

}
else {

response.error =
NSError(domain: "SwiftBluePic", code: 1,

userInfo: [NSLocalizedDescriptionKey:"View not
found"])

}
next()

}
}

func getFeedData (ownerId: String = "",
callback: ([Picture]?, String?) ->

()) {
if let nsURL = NSURL(string:

"http://\(serverUrl)/photos") {
let request = NSMutableURLRequest(URL: nsURL)
request.HTTPMethod = "GET"

Alamofire.request(rRequest).responseJSON
{response in

…
}

}
else {

callback(nil, "Bad server URL")
}

}

iOS Swift Code (Calling REST API) Cloud Swift Code (Fetching data from DB)

End to end Swift (Client and Server)

42

Bluemix Workloads
Build your apps, your way.

Use a combination of the most prominent open-source compute
technologies to power your apps. Then, let Bluemix handle the rest.

Ease of getting started Full stack Control

Open Whisk
Event-driven apps,

deployed in a serverless
environment.

43

Key Features

• The Swift runtime on IBM Bluemix is powered by the
Cloud Foundry buildpack for Swift

• Cloud Foundry buildpacks provide the runtime required to
execute your applications on the Bluemix cloud.

• When you push your application, Bluemix automatically
detects which buildpack should be used. The buildpack
then inspects artifacts in your application to find out what
dependencies should be downloaded.

• This is exciting news since you can now push Swift
applications to Bluemix that follow the structure and
conventions required by the Swift Package Manager.

44

Open Whisk + Swift = iOS Mobile Developer Value

• Open Whisk + Swift breaks down barrier between Front-end &
Backend

• Seamless language support across front-end & back-end (Swift)
• No worry of provisioning, scaling and monitoring
• Open Whisk “Sequences” allow developers to augment existing backend

logic

45

• Mobile developers rely on the
cloud for data and events

• They rely on multiple cloud
APIs to feed their apps

• Typically require others for
backend changes

Package (P)

Action f(x)

Trigger (T)

Rule (R)

Open Whisk Programming Model

R = T à f(x)

Namespace

f(x)

46

Motivation and Introduction

AP
I G

AT
EW

AY

Open Whisk

Swift Node Java …

Incoming HTTP request, e.g.
HTTP GET mynewcoolapp.com/customers

Strongloop

1

2

Invoke associated
whisk action
‘getCustomers’

Browser

Mobile App

Web App

variety of
languages

Open Whisk is a distributed compute service that allows to execute application
logic in response to... requests coming in from web or mobile apps…

47

Motivation and Introduction

1

Swif
t

Event Providers

WHISK

M
ES

SA
G

E
HU

B
Object Storage

Cloudant

Spark

…
Node JavaSwift

Spark Steaming} Data event occurs, e.g.
- CRUD operation on on Object Storage
- CRUD operation in Cloudant
- Spark reports trend detection

Trigger execution
of associated
whisk action

2

Whisk is a distributed compute service that allows to execute application
logic in response to… events other services emit…

48

Trigger

Package

Feed

Package

Feed

Package

Feed

Package

Feed

REST

CLI iOS SDK

CRUD triggers, actions, and
rules

Invoke actions

UI

Action

NodeJS

Action

Swift

Action

Docker

Rule

Rule

Rule

Action

NodeJS

Action

Docker

Service ecosytem

Bluemix services
3rd party services
Self-enabled
services

Chain Chain Invoke

OpenWhisk

IBM	BluemixOpenWhisk
Deploy	event-driven	micro-services	
to	Swift	

49

Preview: Xcode to Swift on OpenWhisk Flow

50

51

Developer Resources

Package Sharing
Swift Sandbox

Developer Portals

52

Swift.org Swift Package Manager

• The newly released package manager allows developers to specify
build targets and dependencies for their libraries and/or applications

• The Swift Package Manager reads these specification files
(Package.swift) and pulls down any dependencies and builds those
along with building the targets that you specify

• The is new for Swift 3.0
• Based on a decentralized design, so there is no one clearinghouse for

all packages. Typically end up pointing to git repositories in Github.
• Early days but many projects are already popping up with support for

being built with the Swift Package Manager

53

The IBM Swift Package Catalog

What is it?
Create, share and discover the many new libraries,
modules and packages being created since Swift
moved to Open Source.

Why is this cool?
Brings the benefits of a catalog to the community
enabling the rapid sharing and discovery of new
submissions.

Developer Benefits ?
Greatly reduce the effort in finding and integrating
new code into your Swift applications

http://swiftpkgs.ng.bluemix.net

54

55

Features
• Mobile UI & Auto Saving Draft
• Code Snapshots & Sharing,

UI Themes, Social
• Social Sharing

IBM Swift Sandbox

The	IBM	Swift	Sandbox
Experiment	with	Swift	on	the	server,	share	
your	code	and	collaborate	with	your	peers

http://swiftlang.ng.bluemix.net

56

Docker Instances Launched for every Run
Request in the Web Console

Global Excitement around Swift

178 Countries
US Traffic ~25%

Translations across
over 450 tech blogs

58

Swift on the IBM Cloud

59

Swift@IBM - Developer Resources

https://developer.ibm.com/swift/

The	Swift@IBM devCenter
Join	 IBM	Swift	Engineering	and	
leverage	the	latest	resources	

60

Technical Blog Threads on Swift@IBM

Swift (General)

• Why I’m Excited about Swift (12/3)

• Running Swift within Docker (12/15)

• Introducing the (beta) IBM Watson iOS SDK! (12/18)

Swift Sandbox

• Introducing Swift Sandbox (12/3)

• Hello Swift! IBM Swift Sandbox Day 1 Wrapup (12/5)

• #HourofCode: Learn Swift in three easy steps today! (12/8)

• Introduction to Swift Tutorial using the IBM Swift Sandbox (12/8)

• What’s new in the IBM Swift Sandbox v0.3 (12/21)

• Exploring Swift on Linux (12/28)

• What’s new in the IBM Swift Sandbox v0.4 (1/20)

https://developer.ibm.com/swift/blogs

Swift (General)

• Swift on POWER Linux (2/1)

• Seven Swift Snares & How to Avoid Them (1/27)

Interconnect 2016

• Build End-to-End Cloud Apps using Swift with Kitura (2/21)

• Introducing the Swift Package Catalog (2/21)

• Talking about Swift Concurrency on Linux (2/21)

• Explore the IBM Swift Sandbox 1-2-3 (2/21)

• Using the Cloud Foundry Buildpack for Swift on Bluemix (2/21)

• 10 Steps To Running a Swift App in an IBM Container (2/21)

• Build End-to-End Cloud Apps using Swift with Kitura (2/21)

Drumbeat of Blogs/Announcements from IBM Swift Engineering Community

61

Xcode Developer
Experience

Swift on the client

Build and
Debug
Applications

IBM Swift Sandbox

Collaborative
Code as
Questions/An
swers

Provision 3rd Party Client-side
Registered Swift Packages

Bluemix Xcode App
Provision IBM Cloud
Service Packages and
Credentials

Swift
Packages

Swift on the server

Docker
Whisk
CloudFoundry
Sandbox

End-to-end developer experience

62

63

Innovators
&

Early
Adopters
Needed

Get involved now at
swift.org

&
developer.ibm.com/swift

64

Thank you for listening and Thank you QCON
London for a Great Conference!

Patrick Bohrer
@pbohrer

Chris Bailey
@Chris__Bailey

