Stream Computing & Analytics At Uber

Sudhir Tonse, Uber Engineering

Mar 7, 2016

UBER

Get There Your day belongs to you

- ~ 68 countries / 350 + cities
- Transportation as reliable as running water, everywhere, for everyone

IN III

Who am I

Engineering Leader, Marketplace Data at Uber

- Marketplace Dynamics
 - Realtime Data Processing

- Analytics
- Forecasting
- Previously managed Cloud
 Platform at Netflix
- Twitter @stonse

Agenda

What's on the menu?

- •Use Cases
- •Problem Space
- •Overall Architecture
- •Choices & Tradeoffs
- •Q & A

Use Cases

Some examples of what we work on

Stream Processing ...

more events ...

Μ a С h S e V С e

Trip States

Realtime OLAP/Exploration

There is always a need for quick exploration

How many open cars in London, right NOW?

Estimated Pickup time, Driving Time and etc over time by geographic area

KPIs over time by hexagon area

SAN FRANCISCO					4
CITY: San Francisco Bay Area	PRODUCT: UberX	~	DATE FROM: 12/1/15 2:00pm (UTC	:-8)	
PICK METRICS		SELECTION RADIUS	3 4	5 6	7
			5 4	5	,
 Driver Driving Client (trips) 					
Load Heatmap					
 Pre request ETA (min) 					
Load Heatmap					
 Post request ETA (min) 					
Load Heatmap					
 Eyeballs count (views) 					
Load Heatman					
 Completed trips (trips) 					
Load Heatmap					
 Requested trips (trips) 					
Load Heatmap					
 Average time from request to dispatch (see 	ec)				
		<u> </u>			
Load Heatmap					
 Driver Pickup Time (min) 					
Load Heatmap					
 Driver Enroute Time (min) 					
Load Kostman					
 Drivers time in Open status (min) 					
Load Heatmap					

Drivers time in On Trip status (min)

土 液 🕑 🔍

Behaviour/Gaming/Fraud

How many drivers cancel a request > 3 times in a row within a 10-minute window?

Detect riders requesting a pickup 100 miles apart within a half hour window?

Complex Event Processing

FROM SELEC GROUI

IF

If This Then That

A simple SQL-like syntax!

that can take **ACTIONS**!!

This ->

In Real Time!

- FROM driver_canceled#window.time(10 min)
- SELECT clientUUID, count(clientUUID) as cancelCount
- GROUP BY clientUUID HAVING cancelCount > 3
- **INSERT INTO** hipchat(room);

hen that ->	Actions		
	HipChat Action		
	Торіс		
	driver_rejection_repeatedly_SF		
	HipChat Room		
	SF cancellation realtime detection by Mystique		
	QHipChat		
allation realtime detection by Mustic			

SF cancellation realtime detection by Mystique

is the room topic. Double click to change it.

driver (I) reject 4 trips in the last 10 minutes
driver (clients 2 times in the last 10 minutes	has been repeatedly canceled by

Clusters Of Supply & Demand

Near Term Forecasting

Airports, Stadiums, Arenas, Business districts, Transit stations, Malls, Dining

Monitoring Business Metrics

Realtime Monitoring of Business Metrics

Blue line: production surge x;

Green line: model estimated surge x;

Red line: error bounding surge x

Ops & Data Scientists

Ops & Data Scientists (Dashboards & Analytics)

Gairos - Realtime Events & Data Solutions

Data Sources	User Datasets	Process Data	Curated Queries	User Queries	Data Visualization	Data Tools	Help
1 { 2 "by": 3 "hexa 4], 5 "filter 6 "type 7 "fiel 8 { 9 10 12 }, 13 { 14 Data Source Query Downlage	[agon_id" r": { e": "and", lds": ["type": "eq", "dimension": "o "value": "1" "type": "eq", "dimension": "v supply_geod	city", vvids", driver	♦ Provi Dime status Metric	des aggregated dri nsions: @timestam s, vvids cs:	iver information. p, driverUUID, city, hex	agon_id, geofenc	æ,
Table Heatr	map Stats		11 Ben 12 10 84 68 10 84 68 10 10 10 10 10 10 10 10 10 10 10 10 10	Keley 74 48 0 10 Piedmont 3 10 21A 228 kland 228 24	Moraga IC CA 13	Alarra	al Danvil
	Davy Cit 494 S10	San Francisco - 1 433 57 51 51 51 51 51 51 51 51 51 51 51 51 51		Alameda 37	768 27 Oriabot Regional 580 Park 31A 30 35 SanLeandro 34 32A 334 32B 31 34 32A 34 34 32A 34 34 32A 34 34 32A 34 34 34 34 34 34 34 34 34 34 34 34	tro Valley = 37	S.

File

50

View

+ 3< 21 € + + H ■ C Code

3 dispatch_accept 4 dispatch accept

5 dispatch_accept

dispatch_secondary_accept dispatch_secondary_accept

8 dispatch_secondary_accept

9 dispatch_secondary_accept

dispatch accept

Jupyter marketplace_experience-Copy1 Last Checkpoint: 02/08/2016 (unsaved changes)

dispatching

offline

on_trip

accepted

dispatching

arrived

open None

Insert Cell Kernel Help

Control Panel Logout Data a O

	Pynon z O				

Logistic Regression

In [197]:	import statsmodels.api as sm									
	<pre>logit = sm.Logit(data['label'], data.drop('label', axis=1)) result = logit.fit() print(result.summary())</pre>									
	Optimization terminated successfully. Current function value: 0.197133 Iterations 7									
	Dep. Variable: Model: Method: Date: Time: converged:	Mon,	68 Feb 17:	label M Logit D 2016 P 10:30 L True L	No. Observations: Of Residuals: Of Model: Pseudo R-squ.: .og-Likelihood: L-Null: LR p-value:		129080 129075 4 -0.01496 -25446. -25071. 1.000			
			coef	std err	z	P> z	[95.0% Conf. Int.]			
	predicted_eta surge speed	-0 2 -0	.0012 .9637 .0057	5.96e-05 0.025 0.002	-19.894 117.685 -3.437	0.000 0.000 0.001	-0.001 -0.001 2.914 3.013 -0.009 -0.002			
	horizontal_accuracy fare	-0.	.0018 .0189	0.000	-5.897 1 15.509	0.000	-0.002 -0.001 0.017 0.021			

EB CelToobar

Other Data

What's not covered

to keep this focused

. . .

ETL Pipeline Offline/Batch Analytics Business Intelligence Stream Processing fundamentals ..

Problem space

What are the challenges?

OLAP of Spacio-Temporal data

Large Scale Data

Near Real Time

Hexagons

- Indexing, Lookup, Rendering
- Symmetric Neighbors
- Convex & Compact Regions
- Equal Areas
- Equal Shape

Geo Space

Scale

Vehicle Types

Time

Granular Data

Berkeley

Emeryville

Oakland

Piedmont

Vehicles Heatmap 11,987 hexagons

etro Intern

inda

Over 10,000 hexagons in the city

Granular Data

7 vehicle types

tro nternation

San Leandro

1440 minutes in a day

Metropolitan Oakland International Airport

San Leandro

Granular Data

13 driver states

etrop nternation

San Leandro

Events - for each action/state

Rider States

Driver States

Granular Data

300 cities

etrop San Leandro nternation

1 day of data: $300 \times 10,000 \times 7 \times 1440 \times 13 = 393$ billion possible combinations

San Leandro

Unknown Query Patterns

Any combination of dimensions

Talk about an example

Variety of Aggregations - Heatmap - Top N - Histogram - count(), avg(), sum(), percent(), geo

Large Data Volume

- Hundreds of thousands of events per second, or billions of events per day
- At least dozens of fields in each event

Lets Build a Stream Processing System!

Skeleton Of A System

Event Producing/Consuming

Match (Dispatch) Services Emit **Billions Of Events Per Topic**

High Scale/Throughput

Events Should Be Available In m-Seconds

Low Latency

Events Should Rarely Ever Get Lost

Events Should Be Consumable By Many Consumers

 \checkmark Durability (no loss) Multiple Consumers

Apache Kafka

- High Scalability (Billions of event per day)
- Very efficient & low latency

Stream Processing System

EVENT PROCESSING

Pre-aggregation

Checkpointing

input stream

Joining Multiple Streams

Sessionization

Trips on Uber can take from few minutes to a few hours Driver Partners can be "online" from few mins to hours

Multi-Staged Processing

State Management

Apache Samza

Why Apache Samza?

- V DAG on Kafka
- Excellent integration with Kafka
- Built in checkpointing
- \checkmark Built in state management
- Highly Scalable
- Fault tolerant

Why Apache Samza?

Partitioned Stream

Skeleton Of A System

WAIT! What About Complex Event Processing?

aka

Continuous Queries

_canceled#window.time(10 min)			
entUUID, cou	unt(clientUUID) as cance	elCount	
clientUUID HAVING cancelCount > 3			
D hipchat(room);			
that ->	Actions		
	HipChat Action		
	Topic driver_rejection_repeatedly_SF		
	HipChat Room		
	SF cancellation realtime detection by Mystique		
	QHipChat	Search hi	
Itime detection by Myst ble click to change it.	ique		
) reject 4 trips in the last 10 minutes	
has been repeatedly canceled by the last 10 minutes			

Complex Event Processing

- Esper
- Siddhi
- •

Skeleton Of A System

Where are the challenges?

Many Dimensions

Dozens of fields per event

Different Geo Aggregation

GO OFFLINE

UBER

Spatio-Temporal Data

Value
driver_arrived
uber X
13244323342
12,23
30,00

OLAP on single-table spatio-temporal data

SELECT <agg functions>, <dimensions> FROM <data source> WHERE <boolean filter> GROUP BY <dimensions> HAVING <boolean filter> ORDER BY <sorting criterial> LIMIT <n> DO <post aggregation>

OLAP on single-table temporal-spatial data

SELECT <agg functions>, <dimensions> FROM <data source> WHERE <boolean filter> GROUP BY <dimensions> HAVING <boolean filter> ORDER BY <sorting criterial> LIMIT <n> DO <post aggregation>

/driverAcceptanceRate?
geo_dist(10, [37, 22])&
time_range(2015-02-04,2015-03-06)&
aggregate(timeseries(7d))&
eq(msg.driverId,1)

Finding the Right Storage System

Minimum Requirements

- OLAP with geospatial and time series support
- Support large amount of data
- Sub-second response time
- Query of raw data

It can't be a KV store

How many keys?

ion	Value
	a
	b

All boolean operators: AND, OR, NOT

Dimension	Value
A	a
B	b

How many keys?

- Dimension Value A a B b
- - A or B
 - not (A or B)

 All boolean operators: AND, OR, NOT • A and (not B) Band (not A)

Challenges to KV Store

Pre-computing all keys is $O(2^n)$ for both space and time

e.g. $2^{10} = 1024$

Sure, K-V Stores Are Fast

Being Fast Is Not Enough

Number of cars per hexagon in a city => 18,000 lookups

Mean latency: 1 ms 99.99%-ile latency: 2s Failure rate: 0.001%

Being Fast Is Not Enough

Probability that a request will exper 83%

Probability that a single query will succeed: $(1 - 0.00001)^{18000} = 84\%$

Probability that a request will experience 99.99%-ile: $(1 - 0.9999^{18000}) \times =$

Lesson: Don't play the probability game

Can we use a relational database?

Challenges to Relational DB

 Managing multiple indices is painful Scaling Is Hard

We Need A System That Supports

- Fast scan
- Arbitrary boolean queries
- Raw data
- Wide range of aggregations

A System That Optimizes

- Data segmentations
- Parallel queries
- Bitset-based set operations
- Index compressions
- Fast range queries

Is there such a system?

Elasticsearch

Relasticsearch.


```
"term": {
   "dispatch.tags": "driver_accepted"
```

```
"term": {
   "dispatch.tags": "pickup_requested"
```

```
"@timestamp": {
   "gte": "2015-01-20T02:52:45.582Z",
   "lte": "2015-01-20T04:59:45.582Z"
```

"distance": "10km", "lat": 37, "lon": -122

Highly Efficient Inverted-Index For Boolean Query

Built-in Distributed Query

Fast Scan with Flexible Aggregations

Skeleton Of A System

What About Really Fast Lookups?

the second secon

Skeleton Of A System

What If there is data corruption?

Or There was a bug in the Event Processing Job?

We Would Want To Backfill Data!

Backfill Data

\checkmark HDFS or S3 ..

- "exactly once" processing
- ML support (for our Data) Scientists)
- Batch and Streaming (well, micro \checkmark batching) support

Skeleton Of A System

• —

UBER

Go to Pin

 \bigcirc

Query Pipelining

Aggregation By Ring Size (Hexagons)

Results Transformation and Smoothing

10,000 hexagons in a city

331* neighboring hexagons to look at

*For a ring size of 9

$331 \times 10,000 = 3.1$ Million Hexagons to Process for a Single Query

99%-ile Processing Time: 100ms

Highly parallelized execution

Pipelining

Is there an Open source solution ? :-)

\checkmark any out-of-box solution?

Stream Processing Flow

Elasticsearch Query Can Be Complex

/driverAcceptanceRate?
geo_dist(10, [37, 22])&
time_range(2015-02-04,2015-03-06)&
aggregate(timeseries(7d))&
eq(msg.driverId,1)

Also, we need to stitch data from ES Realtime, Redis, ES Historical & any other DBs we add in the future

redis

- Pipelining
- Validation
- Throttling

Skeleton Of A System

Applications that use the Query Engine

Uber Marketplace Data Query Applications

Dashboards

Business Metrics Dashboards

State Transitions/Raw Query

Querying data in flexible ways

Streaming

Seeing what's happening now, continuously

Visual Exploration

Explore your data via Geo Visualization tools

Business Metrics Dashboards

Realtime Analytics

SAN FRANCISCO	±∦€Q				
CITY: San Francisco Bay Area	PRODUCT: UberX ~	DATE FROM: 12/1/15 2:00pm (UTC-8)	DATE TO: 12/2/15 2:00pm (UTC-8)	v 1 hour	QUERY
PICK METRICS	SELECTION RADIUS 0 1 2	3 4 5 6 7	 Lat. 	Chile and	Brings
			sais		
Load Heatmap					
✓ Pre request ETA (min)			Los V Cont		Berkeley
			Marin Headlands		
Load Heatmap					
 Post request ETA (min) 					Emery file Prefman
			×		
Load Heatmap					Lidakland - Diversity
 Eyeballs count (views) 					
				FRANCISCO	
Load Heatmap					The second second
 Completed trips (trips) 					
Load Heatman				and the second second	
 Requested trips (trips) 			The second s	9 X X X X X X X X X X X X X X X X X X X	Intern and Amort
Load Heatmap					
 Average time from request to dispatch 	(sec)				
Load Heatmap				South San Annual San	
 Driver Pickup Time (min) 					\ k.
Load Heatmap			Pa ca	- Allrea Airport	
 Driver Enroute Time (min) 					
			173	Heat	nap of Driver Driving Client
				23 peringant 11,205	HEXAGONS AND 12 METRICS
Load Heatmap				11,205	
 Drivers time in Open status (min) 				o soo	1000 1500 2000 2500
			Rancho Con	Tal de	zk to allen-key@uber.com
Load Heatmap			Tierra May ach		
Drivers time in On Trin status (min)			MOS, ach		

Explore Business Metrics Per City/Vehicle Type

Query

Processing

TripCompleted

Streaming

Realtime Visualization

Exploration

Realtime Analytics

Gairos - Realtime Events & Data Solutions

Gairos Dashboard

Overall Architecture

To facilitate exploring, real-time analytics, backfilling, monitoring, ...

Overall Analytics System

• — UBER Go to Pin \bigcirc

Choices/Tradeoffs

What were some of the choices considered? How did we settle down on the final choice?

Stream Processing

Some Choices

Storm

Was our original choice Initial systems built on Storm However Twitter moving away from Storm Unbalanced topologies were problematic Operational complexities

Samza

Our current choice

Well integrated with Kafka Built in State Management Built in Checkpointing

Kinesis

Spark Streaming

Looking at this actively

Micro Batch based processing Good integration with HDFS & S3 Exactly once semantics

Persistence

Some Choices

Distributed Indexes & Queries Versatile aggregations

memsql

In-memory database Fast Analytic Engine

memsq

Druid

Highly scalable Designed for Realtime OLAP However **Operationally Complex**

Analytics/Dashboards etc.

Some Choices

IPython Interactive Computing

Jupyter/IPython

Great community support Data Scientists familiar with Python

In Edit Mar	w Incart Call Kound	Halo		l Brenne i
	w insert Cell Kernel	nep		Python 2
♦ 3< Q	2 dispatch_accept	aspatching		
	3 dispatch_accept	offine		
	4 dispatch_accept	on_trip		
	5 dispatch_accept	open		
	6 dispatch_secondary_accept	None		
	7 dispatch_secondary_accept	accepted		
	8 dispatch_secondary_accept	arrived		
	9 dispatch_secondary_accept	dispatching		
	10 risnatch sacondary accard	on trip		
	and the Barris of the			
	Logistic Regression			
In [197]:	<pre>import statsmodels.api as</pre>	sm		
	logit = sm.logit(data[']ab	el'l. data.drop('label', avisel)	0	
	result = logit.fit()	, , , , , , , , , , , , , , , , , , ,	'	
	<pre>print(result.summary())</pre>			
	Optimization terminated su Current function	ccessfully. value: 0.197133		
	Iterations 7	Logit Pegrossion Posults		
		Logit Regression Results		
	Dep. Variable: Model:	label No. Observations: Logit Df Residuals:	129080 129075	
	Method:	MLE Df Model:	4	
	Time: Non,	17:10:30 Log-Likelihood:	-25446.	
	converged:	True LL-Null:	-25071.	
1		LER p-volue.	1.000	
		coef std err z	P> z [95.0% Conf. Int.	1
	predicted_eta -0.	0012 5.96e-05 -19.894	0.000 -0.001 -0.00	1
	surge 2. speed -0.	9637 0.025 117.685 9057 0.002 -3.437	0.000 2.914 3.01	2
	horizontal_accuracy -0.	0018 0.000 -5.897	0.000 -0.002 -0.00	1
	tare 0,	0189 0.001 15.509	0.000 0.01/ 0.02	-
	Other Data			
	other butt			
In [228]:	from shapely import speedu	ps		
	from shapery import with			
	<pre>speedups.enable() wkt.loads(geofences.filter</pre>	(geofences.name.isin(['East Bay'	<pre>1)).select('shape').collect(</pre>	(01, shape)
0ut12281	A			1
outline).				

Zeppelin

Integrated with Spark Scala, ..)

Kibana

Integration with ElasticSearch

Offer many language support (Python,

Links

Thank you!

- Realtime Monitoring with Uber's Argos (<u>https://eng.uber.com/argos/</u>)
- Spark at Uber (<u>http://</u> <u>www.slideshare.net/databricks/spark-</u> <u>meetup-at-uber</u>)
- Career at Uber (<u>https://</u> <u>www.uber.com/careers/</u>)

Q&A

Happy to discuss design/architecture

No product/business questions please :-)

IIN III

Thank you Sudhir Tonse

@stonse

Proprietary and confidential © 2016 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed and contains information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified that the information contained herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.

