Data Movement Patterns for The Internet of Things.

Or 40 Amazon DCs Ought To Be Enough For Anyone

About Me...

tom.fairbairn@solacesystems.com
https://uk.linkedin.com/in/tomfairbairn

ace Systems

What we'll cover

o A Brief History Lesson
o Some Examples

- Their Impact on Data Movement
- The Magic Tool

IoT v0.5

IoT v 1.0

Implications For Data Movement

1. Bi-directional data movement - but asymmetric
2. Secure with delegated authentication.
3. Massive scale.

- Data rates
- Termination
- Elasticity

4. Predictable within small sub-ecosystems but unpredictable at large.

- Requires multiple classes of service
- Predictable behaviour under unpredictable load

Scale

- 20B Things by 2020? (Gartuert)
- Cloud server terminating 10k devices
- 2 M servers just for termination
- 40 Amazon DCs! (Currently ~12)

Data Movement Considerations

- Considerations
- Security/Safety criticality
- Volume
- Loss tolerance
- Fan-in/out
- Endpoint scale
- Bursting/Robustness

Visualising Data Movement Considerations

Security/Safety

Lives at stake

Visualising Data Movement Considerations

Security/Safety

AAAACH!

Not a lot

Visualising Data Movement Considerations

Security/Safety

No-one notices

Disaster

Visualising Data Movement Considerations

Security/Safety

From everywhere to everywhere

Fan-in/out

Visualising Data Movement Considerations

Security/Safety

Everyone has one

Visualising Data Movement Considerations

Orders of magnitude changes in volume

Difficulty

Easy: difficulty 1\%

Security/Safety

Difficult: difficulty 100%

- Simple, quick and dirty generic estimation of difficulty (area of plot!)
- Plot your proposed solution against requirements
- No work required for overlap ©
- Concentrate on areas where requirement does not overlap capabilities
- Apply weighting for more sophistication

Use Case: Generation Margin

o How many "spare" power stations do we have?

- 30\%! 78GW vs 60GW*

Generation Margin: demand side

- Does your fridge/oven/air conditioner/electro-plater/smelter need power now?
- Consumer signals likely demand
- Producer signals likely cost
- Equilibrium reached
- Lower Supply Margin (cheaper power)
- More tolerant of unreliable sources (wind, solar, tide)

Generation Margin

Grid to White Goods: 28\%
White Goods to Grid:23\%

Use Case: Traffic Management

- Real time charging based on congestion
- Alternative travel planning
-Traffic signal optimisation

Traffic monitoring:38\%

Charging \& alternatives: 53\%

Soliton Waves and Buses

Use Case: Public Transport Optimisation

- Monitor Vehicle location, speed and occupancy (video feed)
- Traveller route planning, vehicle allocation, crime evidence

Security/Safety

Vehicle monitoring:21\%
Route planning etc: 25%

And some others

\square User to Oven
Ovencam to User

- Grid to White Goods

White Goods to Grid
\square Comfort adjustment
Fitness tracker

- Health Monitoring

Alerting
\square Traffic monitoring

- Charging \& alternatives
\square Vehicle monitoring
\square Route planning etc
\square Uber To Driver
\square Uber to Passenger

Evaluating Some Existing Data Movement Solutions

All In All

Kafka
ActiveMQ

- User to Oven
-Ovencam to User
\square Grid to White Goods
White Goods to Grid
\square Comfort adjustment
Fitness tracker
\square Health Monitoring
Alerting
\square Traffic monitoring
Charging \& alternatives
\square Vehicle monitoring
Route planning etc
Uber To Driver
\square Uber to Passenger

Wrapping up

o Every use case is different

- Understand its data movement requirements
- Map them to proposed solution
o Connection count!

