Data Movement Patterns for The Internet of Things.

Or 40 Amazon DCs Ought To Be Enough For Anyone

About Me...

tom.fairbairn@solacesystems.com

https://uk.linkedin.com/in/tomfairbairn

What we'll cover

- A Brief History Lesson
- Some Examples
- Their Impact on Data Movement
- The Magic Tool

IoT v0.5

IoT v1.0

Implications For Data Movement

- 1. Bi-directional data movement but asymmetric
- 2. Secure with delegated authentication.
- 3. Massive scale.
 - Data rates
 - Termination
 - Elasticity
- 4. Predictable within small sub-ecosystems but unpredictable at large.
 - Requires multiple classes of service
 - Predictable behaviour under unpredictable load

Scale

- © 20B Things by 2020? (Gartner*)
- Cloud server terminating 10k devices
 - 2M servers just for termination
 - 40 Amazon DCs! (Currently ~12)

Data Movement Considerations

Considerations

- Security/Safety criticality
- Volume
- Loss tolerance
- Fan-in/out
- Endpoint scale
- Bursting/Robustness

Difficulty

Easy: difficulty 1%

Difficult: difficulty 100%

- Simple, quick and dirty generic estimation of difficulty (area of plot!)
- Plot your proposed solution against requirements
- No work required for overlap ©
- Concentrate on areas where requirement does not overlap capabilities
- Apply weighting for more sophistication

Use Case: Generation Margin

- How many "spare" power stations do we have?
 - 30%! 78GW vs 60GW*

Source: http://www.raeng.org.uk/publications/reports/gb-electricity-capacity-margin

Generation Margin: demand side

- Does your fridge/oven/air conditioner/electro-plater/smelter need power now?
 - Consumer signals likely demand
 - Producer signals likely cost
 - Equilibrium reached
- Lower Supply Margin (cheaper power)
- More tolerant of unreliable sources (wind, solar, tide)

Generation Margin

☐ Grid to White Goods: 28%

White Goods to Grid:23%

Use Case: Traffic Management

- Real time charging based on congestion
- Alternative travel planning
- Traffic signal optimisation

Fan-in/out

Soliton Waves and Buses

Use Case: Public Transport Optimisation

- Monitor Vehicle location, speed and occupancy (video feed)
- Traveller route planning, vehicle allocation, crime evidence

And some others

Evaluating Some Existing Data Movement Solutions

All In All

Wrapping up

- Every use case is different
 - Understand its data movement requirements
 - Map them to proposed solution
- Connection count!

Questions?