

F# MENTORSHIP PROGRAME

FSHARP.ORG/MENTORSHIP

UNFRYING YOUR BRAIN WITH F#
QCON LONDON - MARCH 2016

KILLING DEMONS FOR FUN AND PROFIT

OBVIOUS CODE IS GOOD CODE.

F# IS A GENERAL PURPOSE LANGUAGE.

INTEROP
1:
2:
3:
4:
5:
6:
7:
8:

type Order =
 | GoldOrder
 | PlatinumOrder of string

 member this.OrderInfo =
 match this with
 | GoldOrder -> ""
 | PlatinumOrder(extraInfo) -> "A foamy latte"

PATTERN MATCHING
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:

let openFile (filePath) =
 match filePath with
 | path when
 Path.GetExtension(path) = ".txt" ||
 Path.GetExtension(path) = ".md" ->
 openText path
 | path when
 Path.GetExtension(path) = ".jpg" ||
 Path.GetExtension(path) = ".png" ||
 Path.GetExtension(path) = ".gif" -> openText path

 | _ -> "oh noes"

TOO MANY WHEN GUARDS

ACTIVE PATTERNS
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:

let (|Extension|) (path: string) =
 Path.GetExtension <| path.ToLower()

let openFile' path =
 match path with
 | Extension ".png"
 | Extension ".jpg"
 | Extension ".gif" -> openPictures path
 | Extension ".txt"
 | Extension ".md" -> openText path
 | _ -> "oh noes"

(| BANNANA OPERATOR |)

ACTIVE PATTERNS
Use them outside of a match expression
Pass parameters
Nest them and combine them
Should not be expensive or cause side effects.

TYPE PROVIDERS

1:
2:
3:
4:
5:

type GiphyTP = JsonProvider<"http://api.giphy.com/API/link"
let query = ["api_key", key; "q", searchTerm]
let response = Http.RequestString (baseUrl, query)

let giphy = GiphyTP.Parse(response)

ASYNCHRONOUS WORKFLOWS

1:
2:
3:
4:
5:
6:
7:
8:

let getHtml(url:string) =
 let req = WebRequest.Create url

 let response = req.GetResponse()
 use streatm = response.GetResponseStream()
 use reader = new StreamReader(streatm)

 reader.ReadToEnd().Length

1:
2:
3:
4:
5:
6:
7:
8:

let getHtmlA(url:string) =
 async{
 let req = WebRequest.Create url
 let! response = req.AsyncGetResponse() // ding!
 use streatm = response.GetResponseStream()
 use reader = new StreamReader(streatm)
 return reader.ReadToEndAsync().Length // ding!
 }

1:
2:
3:
4:

sites
|> List.map (getHtmlAsync)
|> Async.Parallel
|> Async.RunSynchronously

COMPUTATION EXPRESSIONS

FAMILIAR

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:

let division a b c d =
 match b with
 | 0 -> None
 | _ ->
 match c with
 | 0 -> None
 | _ ->
 match d with
 | 0 -> None
 | _ -> Some(((a / b) / c) / d)

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:

let divide a b =
 match b with
 | 0 -> None
 | _ -> Some(a / b)

type MaybeBuilder() =
 member __.Bind(value, func) =
 match value with
 | Some value -> func value
 | None -> None

 member __.Return value = Some value
 member __.ReturnFrom value = __.Bind(value, __.Return

COMPILER SERIVICES

SEPARATE HOW TO DEAL WITH DATA, FROM WHAT THE DATA
DOES

ENJOY DYNAMIC LIKE FEATURES WITH TYPE SAFETY

EASE YOUR WAY INTO ASYNCHRONOUS CODE

WHEN YOU NEED TO DO SOMETHING DIFICULT SHOW THE RIGHT
PATTERNS WITH FAMILIAR IDIOMS

MAKE EASY THINGS EASY, AND DIFICULT
THINGS POSSIBLE

@SilverSpoon
roundcrisis.com

HTTPS://GITHUB.COM/ANDREA/UNFRYINGYOURBRAIN

http://localhost:8083/roundcrisis.com
https://github.com/Andrea/UnfryingYourBrain

EVENTS AND USER GROUPS

Other user groups about programming languages that have
no cats with capes on their logos :D

Functional Kats
F#unctional Londoners meetup group

http://www.meetup.com/nyc-fsharp/
http://www.meetup.com/FSharpLondon/

RESOURCES
Extensible Pattern Matching Via a Lightweight Language
Extension
Active Patterns Series: Pattern Matching- Richard Dalton
Interesting active patterns - Luke
Using F# active patterns with Linq
Denatured proteins rescued by trio of chaperones
F# usage survey

http://blogs.msdn.com/b/dsyme/archive/2007/04/07/draft-paper-on-f-active-patterns.aspx
http://www.devjoy.com/series/active-patterns/
http://luketopia.net/2014/09/11/interesting-active-patterns/
http://langexplr.blogspot.ie/2007/05/using-f-active-patterns-with-linq.html
http://www.uchospitals.edu/news/1998/19980710-hsp104.html
https://docs.google.com/forms/d/1Ly_W1ZUH3x_ph4H6I_64uvEib2brDx34j-FoaZkeYLI/viewanalytics

