
*Not just an ops thing.

Observability and Emerging Infrastructures

@mipsytipsy
engineer/cofounder/CEO

“the only good diff is a red diff”

@mipsytipsy
Hates monitoring

Not a monitoring company

@grepory, Monitorama 2016

“Monitoring is dead.”

“Monitoring systems have not changed significantly in 20 years and has fallen behind the way we
build software. Our software is now large distributed systems made up of many non-uniform
interacting components while the core functionality of monitoring systems has stagnated.”

@grepory, 2016
This is a outdated model for complex systems.

We don’t *know* what the questions are, all
we have are unreliable symptoms or reports.

Complexity is exploding everywhere,
but our tools are designed for

a predictable world.

As soon as we know the question, we usually
know the answer too.

“Complexity is increasing” - Science

Architectural complexity

Parse, 2015LAMP stack, 2005

Parse, 2015LAMP

monitoring => observability
known unknowns => unknown unknowns

Welcome to distributed systems.

it’s probably fine.
(it might be fine?)

Many catastrophic states exist at any given time.
Your system is never entirely ‘up’

Exponentially more possible outcomes and # of
components, ephemeral architecture, flexibility

Unknown-unknowns increasingly dominate

Monitoring
The system experienced as magic. Thresholds, alerts, watching the health of a

system by checking for a long list of symptoms. Black box-oriented.

Observability
The world as it really is. What can you learn about the running state of a
program by observing its outputs? (Instrumentation, tracing, debugging)

Monitoring

Observability

Observability
“In control theory, observability is a measure of how well internal
states of a system can be inferred from knowledge of its external

outputs. The observability and controllability of a system are
mathematical duals." — wikipedia

… translate??!?

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Duality_(mathematics)

Observability
Can you understand what’s happening inside your code and systems,

simply by asking questions using your tools? Can you answer any
new question you think of, or only the ones you prepared for?

Having to ship new code every time you want to ask a new question …
SUCKS.

Observability:Software Engineers::Monitoring:Operations

You have an observable system
when your team can quickly and reliably track

down any new problem with no prior knowledge.

Let’s try some examples!
LAMP stack vs distributed system

The app tier capacity is exceeded. Maybe we
rolled out a build with a perf regression, or
maybe some app instances are down.

DB queries are slower than normal. Maybe
we deployed a bad new query, or there is lock
contention.

Errors or latency are high. We will look at
several dashboards that reflect common root
causes, and one of them will show us why.

“Photos are loading slowly for some people. Why?”

Monitoring

(LAMP stack)

 monitor these things

Characteristics

Monitoring

• Known-unknowns predominate
• Intuition-friendly
• Dashboards are valuable.
• Monolithic app, single data source.
• The health of the system more or less accurately

represents the experience of the individual users.

(LAMP stack)

Best Practices

Monitoring

• Lots of actionable active checks and alerts
• Proactively notify engineers of failures and warnings
• Maintain a runbook for stable production systems
• Rely on clusters and clumps of tightly coupled

systems all breaking at once

“Photos are loading slowly for some people. Why?”
(microservices)

Any microservices running on c2.4xlarge
instances and PIOPS storage in us-east-1b has a
1/20 chance of running on degraded hardware,
and will take 20x longer to complete for requests
that hit the disk with a blocking call. This
disproportionately impacts people looking at
older archives due to our fanout model.

Canadian users who are using the French
language pack on the iPad running iOS 9, are
hitting a firmware condition which makes it fail
saving to local cache … which is why it FEELS
like photos are loading slowly

Our newest SDK makes db queries
sequentially if the developer has enabled an
optional feature flag. Working as intended;
the reporters all had debug mode enabled.
But flag should be renamed for clarity sake.

 wtf do i ‘monitor’ for?!

Monitoring?!?

Problems Symptoms

"I have twenty microservices and a sharded
db and three other data stores across three
regions, and everything seems to be getting a
little bit slower over the past two weeks but
nothing has changed that we know of, and
oddly, latency is usually back to the historical
norm on Tuesdays.

“All twenty app micro services have 10% of
available nodes enter a simultaneous crash
loop cycle, about five times a day, at
unpredictable intervals. They have nothing in
common afaik and it doesn’t seem to impact
the stateful services. It clears up before we
can debug it, every time.”

“Our users can compose their own queries that
we execute server-side, and we don’t surface it
to them when they are accidentally doing full
table scans or even multiple full table scans, so
they blame us.”

Observability

(microservices)

Still More Symptoms

“Several users in Romania and Eastern
Europe are complaining that all push
notifications have been down for them … for
days.”

“Disney is complaining that once in a while,
but not always, they don’t see the photo they
expected to see — they see someone else’s
photo! When they refresh, it’s fixed. Actually,
we’ve had a few other people report this too,
we just didn’t believe them.”

“Sometimes a bot takes off, or an app is
featured on the iTunes store, and it takes us a
long long time to track down which app or user
is generating disproportionate pressure on
shared components of our system (esp
databases). It’s different every time.”

Observability

“We run a platform, and it’s hard to
programmatically distinguish between
problems that users are inflicting themselves
and problems in our own code, since they all
manifest as the same errors or timeouts."

(microservices)

These are all unknown-unknowns
that may have never happened before, or ever happen again

(They are also the overwhelming majority of what you have
to care about for the rest of your life.)

Characteristics

• Unknown-unknowns are most of the problems
• “Many” components and storage systems
• You cannot model the entire system in your head.

Dashboards may be actively misleading.
• The hardest problem is often identifying which

component(s) to debug or trace.
• The health of the system is irrelevant. The health of

each individual request is of supreme consequence.

(microservices/complex systems)

Observability

Best Practices

• Rich instrumentation.
• Events, not metrics.
• Sampling, not write-time aggregation.
• Few (if any) dashboards.
• Test in production.. a lot.
• Very few paging alerts.

Observability

(microservices/complex systems)

Unknown-unknowns
• An engineering problem

• Open-ended time scale

• Require creativity

Known-unknowns
• A support problem

• Predictable time scale

• Use a fucking dashboard, then

automate it out of existence

 Why:
Instrumentation?

Events, not metrics?
No dashboards?

Sampling, not time series aggregation?
Test in production?

Fewer alerts?

7 commandments for a Glorious Future™
well-instrumented

high cardinality
high dimensionality

event-driven
structured

well-owned
sampled

tested in prod.

7 commandments for a Glorious Future™
well-instrumented

high cardinality
high dimensionality

event-driven
structured

well-owned
sampled

tested in prod.

well-instrumented
high cardinality

high dimensionality
event-driven
structured

well-owned
sampled

tested in prod.

Glorious Future™

Instrumentation?

Start at the edge and work down
Internal state from software you didn’t write, too

Wrap every network call, every data call
Structured data only

`gem install` magic will only get you so far

Events, not metrics?

(trick question.. you’ll need both
but you’ll rely on events more and more)

Cardinality
Context

Structured data

Metrics are cheap, but terribly limited in context or cardinality.

Metrics
(+tags)

Metrics are cheap, but terribly limited in context or cardinality.

Metrics
(+tags)

UUIDs
db raw queries

normalized queries
comments

firstname, lastname
PID/PPID

app ID
device ID

HTTP header type
build ID
IP:port

shopping cart ID
userid
... etc

Some of these …
might be …

useful …
YA THINK??!

High cardinality will save your ass.

Metrics
(cardinality)

You must be able to break down by 1/millions and
THEN by anything/everything else

High cardinality is not a nice-to-have

‘Platform problems’ are now everybody’s problems

Looking for a needle in
your haystack? Be

descriptive, add unique
identifiers.

Structured Data
Read-time aggregation

lets you compute
percentiles,

derived columns.

Events tell stories.

Arbitrarily wide events mean you can amass more and more context
over time. Use sampling to control costs and bandwidth.

Structure your data at the source to reap
massive efficiencies over strings.

Events

(“Logs” are just a transport mechanism for events)

Dashboards??

Dashboards

Jumps to an answer, instead of starting with a question
You don’t know what you don’t know.

Dashboards

Artifacts of past failures.

Raw

Fast

Iterative

Interactive

Exploratory

Dashboard
overuse
must die

Unknown-unknowns
demand explorability

and an open mind.

sampling, not aggregation
Raw requests:

Aggregation is a one-way trip
Destroying raw events eliminates your ability to ask new questions.

Forever.

Aggregates are the devil

Aggregates destroy your precious details.
You need MORE detail and MORE context.

Aggregates

Raw Requests

You can’t hunt needles if your tools don’t handle extreme outliers, aggregation
by arbitrary values in a high-cardinality dimension, super-wide rich context…

Black swans are the norm
you must care about max/min, 99%, 99.9th, 99.99th, 99.999th …

Raw data examples

“Sum up all the time spent holding the user.*
table lock by INSERT queries, broken down by
user id and the size of the object written, and
show me any users using more than 30% of
the overall row lock.”

“Latency seems elevated for HTTP requests.
Requests can loop recursively back into the
API multiple times; are requests getting
progressively slower as the iteration stack
gets deeper? What is the MAX recursive call
depth, and max latency over the past day? Is
it still growing? What do the 100 slowest have
in common?”

“Show me all the 50x errors broken down by
user id or app id. Show me all the abandoned
carts with the most items in them. Show me
the users rate limited in the past hour, broken
down by browser type or mobile device type
and release version string.”

Zero users care what the “system” health is
All users care about THEIR experience.

Nines don’t matter if users aren’t happy.
Nines don’t matter if users aren’t happy.
Nines don’t matter if users aren’t happy.
Nines don’t matter if users aren’t happy.

Nines don’t matter if users aren’t happy.
Nines don’t matter if users aren’t happy.Raw Requests

Test in production

SWEs own their own services

Services need owners, not operators.

Engineers

must be designed for generalist SWEs.

Observability:

SaaS, APIs, SDKs.

Ops lives on the other side of an API

Operations skills are not optional for software engineers
in 2016. They are not “nice-to-have”,

they are table stakes.

Engineers

Monitoring Instrumentation is part of building software

Engineers

Software engineers spend too much time looking at
code in elaborately falsified environments, and not

enough time observing it in the real world.

• Real users
• Real data
• Real infra
• Other real services

Observability-Driven Development

Test-Driven Development

Watch it run in production.
Accept no substitute.

Get used to observing your systems when they AREN’T on fire.

Engineers

Engineers

Let's build tools that don’t lie to us.

Let’s get comfortable with the messiness of reality

Let’s automate ourselves out of a fucking job.

high cardinality
high dimensionality

event-driven
structured

well-owned
sampled

fun.

Glorious Future™

You win …
Drastically fewer paging alerts!

Black swans are the norm
you must care about max/min, 99%, 99.9th, 99.99th, 99.999th …

You can’t hunt needles if your tools don’t handle extreme outliers, aggregation
by arbitrary values in a high-cardinality dimension, super-wide rich context…

you must be able to explore any individual event.
find and describe any needle in the haystack

Metrics:System::Events:Request

monolith => microservices
“the database” => polyglot persistence

users => developers
single tenant => multi tenancy app

could reason about => def cannot reason about

distributed systems:
it is often harder to find out where the problem is, than what the problem is.

converging trends:

7 commandments for a Glorious Future™
well-instrumented

high cardinality
high dimensionality

event-driven
structured

well-owned
sampled

tested in prod.

Charity Majors
@mipsytipsy

