Observability and Emerging Infrastructures

*Not just an ops thing.

.:homeycomb

OREILLY"

< Database
0. honeycomb Reliability

DESIGNING AND OPERATING
RESILIENT DATABASE SYSTEMS

Laine Campbell & Charity Majors

@mipsytipsy
engineer/cofounder/CEO

“the only good diff is a red diff”

@mipsytipsy
Hates monitoring

o?
@@ honeycomb

Not a monitoring company

MONITORING

1S DEAD

- “Monitoring is dead.”

“Monitoring systems have not changed significantly in 20 years and has fallen behind the way we
build software. Our software is now large distributed systems made up of many non-uniform
Interacting components while the core functionality of monitoring systems has stagnated.”

@grepory, Monitorama 2016

Monitoring is the action of
opbserving and checking the

pehavior and outputs of a system
and its components over time.

@grepory, 2016
This Is a outdated model for complex systems.

We don’t *know™ what the questions are, all
we have are unreliable symptoms or reports.

Complexity is exploding everywhere,
but our tools are designed for
a predictable world.

As soon as we know the question, we usually
know the answer too.

Scientific Graph
Infrastructure & storage complexity
over time

“Complexity Is increasing” - Science

ectural complexity

==
zockeepe:\\
? (na: even gorna tyta
M .
o / alithe lines he'e
cussandry aaputl

e .
Direc: Ccnnect o g‘, L J

— ———
MDD EANEr , " apgicaon |
\ Sonur " \ Sverwe ’

F -
9 werons sMC

~—
~

-~

. -
S e~ -
-~ -~
. g S
. -
u’u“rc

-

Bo apps in TV,
corfigless

LAMP stack, 2005 Parse, 2015

monitoring => observability

known unknowns => unknown unknowns

>

74 -,
/ -
—_— 73 ;
varw S Lol Bauna \ i l \ \ 0100, 566200 s
i'no} \ \ (na: even gorna t'v:tcdh.{

g cassardry / :MN alithe lines he'e
anaiytics, » \‘, o] 1 -
e = / # j;-’ = N, ‘ 5 d N - \ \

- } -~ Direc: Ccnnect o \Ml |

appicacen) " - :,
{ I vt | gno: \ X / o mveranz SMC
Legand: \'

3005 morgoe

= \

;

B0 apps in VY,
corfigless

@rhmroocy

Welcome to distributed systems.

It’s probably fine.

(it might be fine?)

Your system is never entlrely up’

Many catastrophlc states exist at any given time.

YOU KEEP IEING THAT
WORD

J,

.‘ "-"-'i;' 4
IDON'T THINK'YOU KNOW WHAT
IT MEANS

- > ’

o

Exponentially more possible outcomes and # of

components, ephemeral architecture, flexibility
ST A ARl e B g,
Unknown unknowns mcreasmgly domlnate

Monitoring

The system experienced as magic. Tlhresholds, alerts, watching the health of a
system by checking for a long list of symptoms. Black box-oriented.

Observability

The world as It really iIs. What can you learn about the running state of a
program by observing its outputs? (Instrumentation, tracing, debugging)

sz e A
B S ——

: N = e

e T

B e o

y
-,
./‘\
\

U RYE <<<g\

' ‘a\ t-rnl. 0 AT W uu'r,rlx nn&

(!1’!

= ¢ A

+
o

“In control theory, observability is a measure of how well internal
states of a system can be inferred from knowledge of its external
outputs. The observability and controllability of a system are
mathematical duals." — wikipedia

Observability

... translate??!1?

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Duality_(mathematics)

o\

Can you understand what’s happening inside your code and systems,
simply by asking questions using your tools? Can you answer any
new guestion you think of, or only the ones you prepared for?

Observability

Having to ship new code every time you want to ask a new question ...
SUCKS.

IONS

You have an observable system
when your team can quickly and reliably track
down any new problem with no prior knowledge.

Let’s try some examples!

LAMP stack vs distributed system

“Photos are loading slowly for some people. Why?”
(LAMP stack)

The app tier capacity is exceeded. Maybe we

rolled out a build with a perf regression, or monitor these things

maybe some app instances are down.

Errors or latency are high. We will look at
several dashboards that reflect common root
causes, and one of them will show us why.

DB queries are slower than normal. Maybe
we deployed a bad new query, or there is lock
contention.

Monitoring

Characteristics
(LAMP stack)

 Known-unknowns predominate
* |ntuition-friendly
 Dashboards are valuable.

* Monolithic app, single data source.

* The health of the system more or less accurately
represents the experience of the individual users.

Monitoring

Best Practices

* Lots of actionable active checks and alerts
* Proactively notify engineers of failures and warnings
 Maintain a runbook for stable production systems

* Rely on clusters and clumps of tightly coupled
systems all breaking at once

Monitoring

“Photos are loading slowly for some people. Why?”

(microservices)
Any microservices running on c2.4xlarge
instances and PIOPS storage in us-east-1b has a
1/20 chance of running on degraded hardware,
and will take 20x longer to complete for requests witf do 1 ‘monitor’ for?!
that hit the disk with a blocking call. This

disproportionately impacts people looking at
older archives due to our fanout model.

Canadian users who are using the French
language pack on the iPad running iI0S 9, are
hitting a firmware condition which makes it fail
saving to local cache ...

Our newest SDK makes db queries
sequentially if the developer has enabled an
optional feature flag.

Monitoring?!?

Preblems Symptoms

(microservices)

'l have twenty microservices and a sharded
db and three other data stores across three
regions, and everything seems to be getting a
little bit slower over the past two weeks but
nothing has changed that we know of, and
oddly, latency is usually back to the historical
norm on Tuesdays. g

L

“All twenty app micro services have 10% of
available nodes enter a simultaneous crash
loop cycle, about five times a day, at
unpredictable intervals. [hey have nothing in
common afaik and it doesn’t seem to impact
the stateful services. It clears up before we
can debug it, every time.”

“Our users can compose their own queries that
we execute server-side, and we don’t surface it
to them when they are accidentally doing full
table scans or even multiple full table scans, so
they blame us.”

Observability

Still More Symptoms

(microservices)

“Several users in Romania and Eastern
Europe are complaining that all push
notifications have been down for them ... for
days.”

“Sometimes a bot takes off, or an app is

“Disney Is complaining that once in a while,
but not always, they don’t see the photo they
expected to see — they see someone else’s
photo! When they refresh, it’s fixed. Actually,
we’ve had a few other people report this too,

featured on the iTunes store, and it takes us a we just didn’t believe them.”
long long time to track down which app or user

IS generating disproportionate pressure on
shared components of our system (esp
databases). It’s different every time.”

Observability

“We run a platform, and it’s hard to
programmatically distinguish between
problems that users are inflicting themselves
and problems in our own code, since they all
manifest as the same errors or timeouts."

These are all unknown-unknowns

that may have never happened before, or ever happen again

(They are also the overwhelming majority of what you have
to care about for the rest of your life.)

x

; Char@cteristies i *
microservices/complex systems)i e
 Unknown-unknowns are most of the pgt‘able?*fs i

e “Many” components and stora%e systems

* You cannot model the entire system in your head.
Dashboards may be actively misleading.

* The hardest problem is often identifying which
component(s) to debug or trace.

* The health of the system is irrelevant. The health of
each individual request Is of supreme conseguence.

Observability

Best Practices
(microservices/complex systems)

* Rich instrumentation.
* Events, not metrics.

 Sampling, not write-time aggregation.

Y i

* Few (iIf any) dashboards.

* Jest In production.. a lot.

* Very few paging alerts.

Observability

Known-unknowns
- A support problem

Predictable time scale

Use a fucking dashboard, then
automate it out of existence

Unknown-unknowns

 An engineering problem
Open-ended time scale

Require creativity

Why:

Instrumentation?
Events, not metrics?

No dashboards?
Sampling, not time series aggregation?

Test in production?
Fewer alerts?

7 commandments for a Glorious Future™

well-instrumented
high cardinality
high dimensionality
event-driven
structured
well-owned
sampled
tested in prod.

7 commandments for a Glorious Future™

well-instrumented
high cardinality
high dimensionality
event-driven
structured
well-owned
sampled
tested in prod.

Glorious Future™

well-instrumented
high cardinality
high dimensionality
event-driven
structured
well-owned
sampled
tested in prod.

Instrumentation?

/,

Start at the edge and work down

f—« Internal state from software you didn’t write, too

‘ Wrap every network call, every data call
Structured data only

‘gem install magic will only get you so far

9
q

Events, metrics?

Cardinality
Context
Structured data

(trick question.. you’ll need both
but you’ll rely on events more and more)

<bucket>:<value>|<type>|€@<sample rate>

login.time:22 |ms # record a login.time event that took 22 ms

import statsd
statsd client = statsd.StatsClient('localhost', 8125)

@statsd client.timer('login.time')

def login(username, password):
statsd client.incr('login.invocations')
if password valid(username, password):

render welcome page()

login.time.avg
30

Metrics are cheap, but terribly limited in context or cardinality.

A W R EE L A S T T B T o T o £ T o VT N I T Y gy S — e L T T T A TR LT T A e
SRR A NLLL S v . W g -)

http.get.200.user8996.count [2]1[1][1[1[]

http.get.208.user9b93.count [][1[3]1[2][3]

http.get.208.userca49.count [][1[1]1[][]

http.get.208.userzbd8b.count [][1[1[3][3]

http.get.3602.user8996.count [][1[1[2][]

http.get.362.user9b93.count [][J[2]1[1[]

http.get.302.userca49.count [][1[1][][]

http.get.302.userzb85.count [][J[1]1[1[]

http.get.484.userd®96.count [J[1][1[1[]

http.get.286.count [2][1][4][B][6] http.get.484 . .user9b93.count [[1[2]1[1[]
http.get.3602.count [][J[3]1[1][] http.get.484.userca49.count [][1[][1[1]
http.get.484.count [J[1][2][][Z] http.get.484.userzbdb.count [][1[1[1[1]
http.post.281.count [9][7][3][6][°] http.post.201.userd996.count [1][2][1][1[3]
http.post.483.count [J[A][3][1][| http.post.201.user9h93.count [1][2][1[2][4]
http.post.B@@.count [][J[?][1][| http.post.201.userca49.count [4][1][5][1][1]
http.post.201.userzb8b.count [3][2][2][3][1]

e http.post .4683.userd?96.count [[1[1]1[1[]
SRR http.post.483.user9b93.count [J[11[10 1[]
Leas http.post.483.userca49.count [[J[L]1[1][]
http.post.483.user2bdb.count [][1[1]1[1[]

http.post.588.user899.count [][1[J[1][]

http.post.588.user9b93.count [][J[1][1[]

http.post.5B6B.userca49.count [[J1[7]1[1[]

http.post .58 .userzb8b.count [[J[1]1[1[]

statsd.increment(http.S{method}.S{status_code}.count’)

Metrics are cheap, but terribly limited in context or cardinality.

Metrics
(cardinality)

Some of these ...
might be ...

useful ...
YA THINK??!

High cardinality will save your ass.

UUIDs
db raw queries
normalized queries
comments
firstname, lasthame
PID/PPID
app ID
device ID
HI TP header type
build ID
IP:port
shopping cart ID
userid
.. etc

High cardinality is not a nice-to-have

You must be able to break down by 1/millions and
THEN by anything/everything else

‘Platform problems’ are now everybody’s problems _

/

P{'Timestamp":"Sat Sep
"api_version":"1"
"availability_zone”
"batch":false
"build_1d": "4715"
"chosen_partition

L)

il

A

r a needie

y@w Lrw/xmb 5€e

131
B) >
€, add unique

\“ S Lk T et

"dataset_columns": 35
"dataset_1d":3915

"dataset_name”
"dataset_partitions
"dynsample_key
"dynsample_rate":1
"env":"production”
"event_columns":23
"event_time
"extra_headers”

.....
......

»"Accept-

"tnstance_type"
"Json_decoding_dur_ms
'‘memory_inuse
"'method": "POST"
"nested_json":false
"nested_json_depth":0
"num_goroutines":270

lets you compute
percentiles,

"content_length":1567/85

2 W@:30:56 UTC 2017°

"us—-east-1b"

"dataset_expand_json_depth":0

s "kubernetes—-resource-metrics”
SR cY
": "batchff2915

35] "
784202

S 1% 1% N o W 5 1% I %1% B 1% P

S S Encoding: 921plC0nnect10n keep— allve|C0ntent Length:l
_wf” ”{l:wnt -Type: appllcatlonfjsonlx Forwarded-Port: 443IX Forwarded-Proto:https”

PR "c4.large"”

"1 278.703396
"r1.172884

-,

-
a B

H

- P

\r—’\/'\ﬁ\ /wv\r-‘\\\r\/f\ \f-’v

WV AW U L WL 49 AL UGA

z "oversize_len_longest_string_column":90
derlved C0lumnS. "oversize_num_columns":0
"oversize_total_bytes":0
"prep_partition_info_dur_ms":0.004373

"process_uptime_seconds
"remote_addr":"160.0.54.

odn,

| e [

N - A1 £

112545
83:2158"

KRR | L K Rl I b T W 0 B I S I = 2 Ml B W 1 s B ol P B o UCE R B h) e BN

*

* tell stories.

Arbitrarily wide events mean you can amass more and more context
over time. Use sampling to control costs and bandwidth.

w *

*x

Structure your data at the source to reap
massive efficiencies over strings.

(“Logs” are just a transport mechanism for events)

N CWU;‘)S nDO.‘.\I‘G W o BECilor m

T < Overview latency (95%) Stream latency (95%) External Response, Login Page Max latency, last hour -
1w ilre sk : Lirrp Wi : Tegd serd Tirne e For Srven kregr LN ANer Gragh Arel'v s frare l‘.
—] L — - vao < e —— L ol — _— 4 am 0000 —— "y

- d - 4 b o | [i [L B | r (o | y o4 4o -

1 » Mert: Latency is 2 ftte high L OK | l mt A . | 1 ‘ V| -
4 9] < -~ - (| 4 ' 4 (—_—_T
AR o 4 4 ¥ a
o0t . H ® 1 L B | S — D

User oliviervielpeau Logged in the AW

UK

) '
! , |

fawls extraces by partcon <8 BT \ :
!)

P 1

‘

o i - console
Al My A A \] " [T \ L f ol ’

e DM W A "-""q""l/""' 4 ﬂ\ \ N N 2y) 'r._f‘n_.‘_ 4,'1‘{ o 1|';;¢‘, K Pl e :{h p '\.__ ‘.__/(f'\‘. j (N k‘f A | '
53 S3Bucket series-prod has been
Created by dogweb

Ki“,’ page atency ih
600
o] §€ kafka

<00 “'"' ”v = \' V o ’J\ "WV' od ha ("M”'” " "i 1 month of Kafka disk utilization

023 10 <0 10 42 10.3¢C 10,52

53 S3Bucket series prod has been
Created by dogweb

Alert: TEST MONITOR L3 : Eventsthotmowch ™
v N Zombies is critical on |- 67e47234

1170 12:00 1300 1407

e Ib ssas azu
Magloa -
= .:. ¢ = : 53 S3Bucket snapshots prod has been
,- - .
™I s o= 11 1 SREEEE .. 8 I) [Triggered) Datadog Agent whatever = Created by dogweb
. . . o n . -e = = . d
.- - 8] l sy] ._ BEus '\:/ R
] - -
- i] el 1L} -+ \ 0
L L L l___.lln AEa==NN AEgEs 3 Delancie job 'crawlecazure -api' failed with an n : .
1 San 3 53 538ucket series prod has been
" 14 34 vian L ua(.apllun
“« 2 Created by dogweb
gestem.load.l - °h . - . - - —_—
137 -eazsEng /1, [Triggersd on fappinonel] Apps restarting
r B » \ - r IR AZD . - . -
b Ll o User aaditya.talwai Switched Role in the AWS
g:’_ ‘-;;{;:o A [Triggered on (hosti=6539cd84}] Latancy Is a | consale
2 RI7OTE
044 -4355b727 \o/ high {query alert) . I
037 | Ib3sscls 18 5605 320 \

|
3% A < N < RS < - IS < IS < S « ¥

034) BIF0BID — e . .
93 1-DTLOGs _“p_ [Triggered) Brokerstate restarting 1200 User aaditya.talwai Logged in the AWS
cnwvenla
DoccoMmit
-
- . | sanara

A % | 3 L :) ! | r
- H * R l"“ A Dt LA \,).* 4 :) LAl A I\ \‘ '
"'1“,...:3.,\.“.. Gt P ."J.A_, M“W ﬂmﬁm “O'Nf‘ .,ﬂ ﬂ. } ot 1,,.-‘ o

- a At MM '

Iriggered: pd crawl

4 - J e oed
1 v 187 svstems load. 1 d Resolved: Sobatka max queue ciza it over
P ey p 10k on org id:2 on {org id:2}
d Resolved: No Data: Rawls Extract 1s Not
3554 3 A = p Processing Points on partition:2 on

[partition:2]

Resolved: No Data: Rawls Extract 4h Is Not

, _ ; » pd Processing Points on partition:2 on
"'\c Mﬁ#*wawmhjquwlﬁ Ay YA t‘},‘*u. £ Jt-ma’-»- L "‘wﬁm«%-%* gy P ’ L. et .
P3N PR PSR Y St S SRR TN A g), YO Wit e g, T N - pRr_ N T ey M - -.n.'-“_,l_,... . > Al 2
, o o “ e -
memegenerator nel

-

=R ’Jb-tt)ﬂaﬂﬁ'ﬁii , .ﬂm k‘\w“ “ '-b}“\“"v’- K‘;—% VW Pt) ,\")" e AJ."' A, .jm'ﬁ* U ‘?“ s ".‘e'{;:"" L atency in ms (95th percentile) " ¢ L 0ad per host s O
S Ny P, = A S— Lot Pty Yo AN " —~ i e GV’ T ima T sttt AN e » i e e e i - ' c

S ——— o I.llullllll_ R T R —— i et

\4—/“\" - —— - — \—J\M e .

S B — /-’-.m-- - - .

S TS s e e .

R i e e — —
§))0 45 210

Dasnpoarads

Artifacts of past failures.

Jumps to an answer, instead of starting with a question
You don’t know what you don’t know. /

db.op.reads.latency.avg

db.op.writes.latency.avg

db.op.reads.latenc

db.op.writes.|4

db.op.deletes.

db.ns.libdata.latency.avg
db.ns.libmeta.latency avg
db.ns.alltxns.latency.avg

db.op.reads.latency.p95

db.op.writes.latency.p95

db.op.writes.latency.p95
db.op.increments.latency.p95
db.op.updates.latency.p95
db.op.deletes.latency.p95

db.ns.libdata.latency.p95
R.ns.libmeta.latency.p9t
_alltxns.latency.p95

db.op.reads.latency.pt9

db.ns.libdata.latency.p99
db.ns.libmeta.latency.p99
db.ns.alltxns.latency.p99

db.cp.writes.lz
db.cp.incremc

db.cp.deletes

i latency.sum
eta.latency.sum

bDashiboara
overuse

Musy 8[??@

e
WM@ WAl 7|1hﬂ“"1h|@ NS

&-.I Hl

demana explorapilliGy,

~ 0ol 5[~hol @TQ)@M W'nmvvhm@u

—

Raw requests:

sampling, not aggregation jiVa*
ogr

)

f

Aggregation Is a one-way trip

Destroying raw events eliminates your ability to ask new questions.
Forever.

FLERZE
DOM'T ZMO0=H AWAY ALL
MY FRECIOUS DETHIL!!

Aggregates are the devil

Aggregates destroy your precious details.
You need MORE detail and MORE context.

Aggregates

You can’t hunt needles if your tools don’t handle extreme outliers, aggregation
by arbitrary values In a high-cardinality dimension, super-wide rich context...

Black swans are the norm

you must care about max/min, 99%, 99.9th, 99.99th, 99.999th ...

“Sum up all the time spent holding the user.”
table lock by INSERT queries, broken down by
user id and the size of the object written, and
show me any users using more than 30% of
the overall row lock.”

|

“Latency seems elevated for HT TP requests.
Requests can loop recursively back into the
APl multiple times; are requests getting
progressively slower as the iteration stack
gets deeper? What is the MAX recursive call
depth, and max latency over the past day? Is
it still growing? What do the 100 slowest have

in common?”

Raw data examples

“Show me all the 50x errors broken down by
user id or app id. Show me all the abandoned
carts with the most items in them. Show me
the users rate limited in the past hour, broken
down by browser type or mobile device type
and release version string.”

Zero users care what the “system” health is

All users care about THEIR experience.

Raw Requests

Test in production

SWEs own their own services

‘ #
: —
—
’ N

Services need owners, not operators.

Observability:

must be designhed for generalist SWEs.

SaaS, APIs, SDKs.

Ops lives on the other side of an API

Engineers

Operations skills are not optional for software engineers
In 2016. They are not “nice-to-have”,

————

\?\/ <

they are table stakes. ‘ \ i| ’

Engineers

Monitoring is part of

building software.

. .
| ! | .
N .
-
-~

wmeﬁtatlon is part of building software

Engineers

Software engineers spend too much time looking at
code In elaborately falsified environments, and not
enough time observing it in the real world.

* Real users
* Real data
* Real infra
 Other real services

0

~J
Ny

| & |
s

J |

: ~ A
[oy nd g]ﬁ\\'k)ﬂ'\ﬁr’/ﬂ\ﬁ'n\

VUL IV O

4 4 |
11

srvability-Driven

| @ |
-

P & W @

I |
—

Watch it run in production.

Accept no substitute.

Get used to observing your systems when they AREN’T on fire.

Engineers

Think about
distributed systems.

Bulld better tools.

Engineers

Let's build tools that don’t lie to us.

Let’s get comfortable with the messiness of reality

Let’s automate ourselves out of a fucking job.

b

WE 'I'ES'I' IN PR

. At

!mmmv Ve S s

Glorious Future™

high cardinality
high dimensionality
event-driven
structured
well-owned
sampled
fun.

Black swans are the norm

you must care about max/min, 99%, 99.9th, 99.99th, 99.999th ...

You can’'t hunt needles If your tools don’'t handle extreme outliers, aggregation
by arbitrary values In a high-cardinality dimension, super-wide rich context...

vou must be able to explore any individual event.

find and describe any needle in the haystack

Metrics:System::Events:Request

converging trends:

monolith => microservices
“the database” => polyglot persistence
users => developers
single tenant => multi tenancy app
could reason about => def cannot reason about

distributed systems:
It Is often harder to find out where the problem is, than what the problem is.

7 commandments for a Glorious Future™

well-instrumented
high cardinality
high dimensionality
event-driven
structured
well-owned
sampled
tested in prod.

Charity Majors
@mipsytipsy

