e

Software Design for Per3|ste

Howard Chu

CTO, Symas Corp. hyc@symas.com
2018-03-07


mailto:hyc@symas.com

symas
Personal Intro

e Howard Chu

- Founder and CTO Symas Corp.

- Developing Free/Open Source software since
1980s
 GNU compiler toolchain, e.g. "gmake -|", etc.
 Many other projects...
* | never use a software package without contributing to it

- Worked for NASA/JPL, wrote software for Space
Shuttle, etc.



symas
Personal Intro

« Career Highlights

- 2011- Author of LMDB, world's smallest, fastest, and most
reliable embedded database engine

- 1998- Main developer of OpenLDAP, world's most
scalable distributed data store

- 1995 Author of PC-Enterprise/Mac, world's fastest
AppleTalk stack and Appleshare file server

- 1993 Author of faster-than-realtime speech recognition
using Motorola 68030

- 1991 Inventor of parallel make support in GNU make



symas |
Topics

 What Is Persistent Memory?
 What system-level support exists?
 How do we leverage this in applications?



symas |
What is Persistent Memory

* Non-volatile, doesn't lose contents when system
IS powered off

» Can be thought of as battery-backed DRAM

- billed as byte-addressable storage, but really Is still
constrained to cacheline granularity

- being used as a new layer in system memory
hierarchy, between regular DRAM and secondary
storage (SSD, HDD)

— Ideally, will replace regular DRAM completely



- -symas |
What Is Persistent Memory

Competitive Memory Component Landscape

Characteristics STT-MRAM DRAM 3D Xpoint Resistive Low Power NAND
RAM CBRAM
Supplier E RYRDEDIN Multiple Intel/Micron Crossbar Adesto Multiple
Latency R/W 70ns/70ns 40-180ns! 100ns,/500ns 100ns,/100us 1ps/25-100ps 255 - 1500us?
Endurance 100 -1p%2 1013 105-107 10°-108 10° 10%-10°
Persistent Yes Yes Yes Yes
Interface ST-DDR3/ST-DDR4 | DDR3/DDR4 Flash-like 5Pl NAMND
Status Shipping Shipping Shipping Optane RE&D Production Shipping
Density Path Gigabit+ Gigabit+ 64Gh+ Terabit 64Mb Gigabit+

PrEL\\;Jductinn STT-MRAM startups:
Avalanche Technologies — 32Mb SPI interface NOR Flash alternative, not shipping volume

Spin Transfer Technologies — Technology demonstration only
Crocus — magnetic sensor focus

P ™ 1. Readfwrite symmetric, latency spans bus idle and bus busy
- 2. Fastest read latency for SLC; slowest write latency for TLC



symas |
What is Persistent Memory

« STT-MRAM is the leading technology for now

- performance equivalent to DRAM
- endurance approaching DRAM (10712 vs 10715 writes)

- ST-DDR3, ST-DDR4 DIMMs available - drop-in compatible
with DDR3/DDR4

- Still lags in density, 256Mbit parts reaching market now

e Fabricated on 40nm process

« Compared to 8Ghit DDR4 DRAM chips already mainstream, on
10nm process

- Production on 22nm process expected later this year



symas |
What is Persistent Memory

» Other possibilities exist

- actual battery-backed DRAM DIMMs (BBU DIMM)

 offered up to 72 hours of persistence
» deprecated, no longer marketed

- Flash-backed DRAM DIMMs (NVDIMM)

o typically with a super-capacitor onboard
» copies DRAM to flash on system shutdown

» All of these are more expensive than regular
DRAM



symas
System-Level Support

 Requires both BIOS and OS support

- POST must use non-destructive memory test, or
just skip memory test

- Kernel must recognize NV memory

— Linux kernel boot args can be used to explicitly
mark memory as persistent

- Current state of OS support is extremely primitive



symas
System-Level Support

» Kernel treats persistent memory as a block device

— you can create a filesystem on top and use it as a glorified
RAMdisk

e Congratulations, welcome to the state of the art of 1986.

— you can use it as cache dedicated to a particular set of
devices

e using dm-cache, bcache, flashcache, etc.

 but these solutions are written for Flash SSDs, and aren't optimal
for persistent RAM

— current designs assume only a small subset of system
memory IS persistent

10



symas
System-Level Support

e Future support must account for systems with
100% persistent memory

- Kernel page cache manager must be modified to
utilize hot cache contents left by previous bootup

- "persistent memory" must become just "memory" -
used for system-wide device caching, instead of
Isolated In its own block device

11



symas
System-Level Support

* Whether system is 100% persistent RAM or not,
memory should be managed by kernel and not require
direct management at user level

— current usage as distinct block device requires a user to
manually manage it

« explicitly copy files to it

« when the space gets full the user must choose some files to
delete, in order to make room for new files

- Instead, used as part of the system cache, the OS can
page data in and out as needed, without any user
Intervention

12



Symas S .
Application Design

* Mindset

* Design Concepts

* Implementation Choices
» Other Detalls

- Concurrency Control
- Free Space Management
- Byte Addressability

 Endgame

13



Symas -0 . .
Application Design

 Requires a different mindset

- Should not view "memory" and "storage" as distinct
concepts - must adopt "single-level store"

e Storage and RAM are interchangeable, via memory-
mapping
- Data structures that are intended to be persistent
must be written atomically - interruption of updates
must not leave corrupt or inconsistent states

- Avoid temptation to take "memory-only" / "main
memory" design approach

14



Symas -0 . .
Application Design

* Problems with "main memory" approach

- Alaw of computing: data always grows to exceed
the size of available space

- There will always be larger/slower/cheaper memory

In addition to fast in-core memory: there will always
be a hierarchy of storage

- You must design for growth, and take this hierarchy
iInto account

15



symas

» Essentially,
provide ACI

— persistent

Design Concepts

nersistent data structures must
D transaction semantics

RAM gives Durabillity, implicitly

- the rest is up to you
» Atomicity can be actual, or effective

— Actual: you only support modifications that can be

performed

with a single atomic update

- Effective: you use undo/redo logs to allow recovery
from interrupted updates

16



symas |
Design Concepts

* If you go for "effective atomicity” you'll need to have
complex locking mechanisms to protect intermediate
update states

* Once you go down the path of complex locking, you
also have to deal with deadlocks, backoffs, and retries

 All of this involves a great deal of additional code on
top of the actual data structure code

 Complex locking will not scale well across multiple
CPU sockets

17



symas |
Design Concepts

e |f you use undo/redo logs you'll need to build a robust
crash detection mechanism, as well as a crash recovery
procedure to recover from incomplete transactions

 The undo log will also be needed to execute transaction
abort/rollback in normal (non-crashed) operation

The log will be a central bottleneck in all write
operations

Logs will need explicit management - pruning/etc

18



symas |
Design Concepts

e Better approach is to use MVCC (Multi-Version
Concurrency Control) with a single pointer to
the current version

- Once a new version has been constructed, a single
atomic write to the version pointer can be used to
make it visible

— Since each transaction operates on its own version
of the data structure, transactions have perfect
Isolation

19



symas |
Design Concepts

e Best solution, based on constraints so far:

— data structure must be storage oriented, for growth - not a
memory-only structure

- data structure must have atomic update visibility
 Use a B+tree

- Inherently suited to caching, memory hierarchy

— using Copy-on-Write, can expose a hew modification simply
by updating a pointer to the root of a new tree version

e a new update can be simply aborted/rolled back just by omitting
the pointer update, no undo/redo logs needed

20



symas |
Implementation

» Successful implementation requires explicit
control over memory layout of data structures

- structures must be CPU cacheline aligned, both for
performance and for integrity

- this precludes implementing in most higher level
languages

21



symas |
Implementation

* We're now clearly talking about a storage library

- there's a lot of details to manage, but they can be
hidden in a library

- written in a low level language

- should use something like C

« easily callable from any other language
e mature, portable, flexible

e direct control over memory layout
- allows identical layout for "in-memory" and "on-disk" representation

22



symas . .
More Design Choices

* Multi-process concurrency, or just multi-thread?

— Multi-thread in a single process is simpler
» doesn't require shared memory for interprocess coordination
— Multi-process concurrency is more flexible

 allows administrative tools to query and operate regardless of whether
the main application is running

 Single-writer or multiple writer?

- Single-writer is simpler, eliminates possibility of deadlocks

— Multi-writer requires complex locking, conflict detection

 and still boils down to single-writer anyway, given the requirement of
atomic visibility

23



symas |
Implementation

 Use mmap to expose data to callers

- Use a read-only mmap, otherwise random
overwrites will be persisted, causing unrecoverable
corruption

- Pointers to data in map can be returned directly to
callers on data fetch requests, thus avoiding
expensive malloc/copy operations

* This requires that data values are always stored
contiguously, even If values are larger than B+tree page
size

24



symas

Implementation

» Can optionally use writable mmap

Opens a window to corruption vulnerability

Requires explicit cache flush instructions, to ensure
writes are pushed from CPU cache out to RAM (if not
using msync)

No performance benefit over readonly mmap

e Writing a page requires that it first get faulted in, wasted effort if

the entire page Is going to be overwritten
May not be worth the cost in reliability and portability
« forcing a CPU cache flush is highly system-dependent

25



symas
Concurrency Control

« Systems commonly offer reader/writer semantics

- 1 writer can operate exclusively, or arbitrary number
of readers

— writer and readers cannot operate simultaneously

* Done properly, an MVCC-based design allows
readers to run wait-free, taking no locks

— writer should be able to operate concurrently with
arbitrary number of readers

26



symas
Free Space Management

 With MVCC, storage space rapidly fills up with
old/obsolete versions of data

* Most applications will have no use for the old
versions

* Reclaiming space from obsolete versions will
be critical for long term usability

» "Background" garbage collection (GC) is a
commonly practiced approach but is not viable

27



symas
Free Space Management

» Background GC assumes there's always spare CPU and
/O capacity

- GC can consume more CPU and I/O bandwidth than the actual
user workload

 which then leads to requiring complex runtime profiling and throttling
Implementations

— Thus it will either require over-provisioning of system resources,
or GC will always cause user-visible pauses in processing

» Better to track page usage in foreground and reuse old
pages when they become available

- Yields consistent write throughput without any pauses

28



symas
Free Space Management

» Tracking page availablility has a direct impact on
concurrency

- Must record which readers are referencing which old versions,
to know which old versions can be purged/reclaimed

— Could just use a simple counter, recording the oldest version
still in use
* but accessing the counter becomes a bottleneck for readers

— Better to use an array with one slot per reader

 array slots must be cacheline aligned

 slots can be updated by readers and checked by writers without
taking any locks

29



symas N
Byte Addressability

* Highly touted feature of NVRAM-based storage

» Largely a red herring

- Can be useful for current RAMdisk-style approaches,
but these are evolutionary dead ends

- Eventually the industry will wake up to the fact that
reinventing reset-survivable RAMdisks was a waste of
time and money

- NVRAM will eventually be integral to the system cache,
and the system cache Is necessarily page-based

30



symas
Endgame

 Based on the given design constraints:

— atomicity, persistence, robustness, simplicity,
efficiency

- single-level store, blurring the line between memory
and storage

* You'll end up with something that looks a lot like
LMDB

31



symas |
LMDB Overview

 LMDB "Lightning Memory-Mapped Database"

 embedded key/value store implemented with a
B+tree

* as the name indicates, It uses memory mapped
data
- defaults to read-only mmap

— zero-copy reads: retrieved data points directly into
mmap

— zero-copy writes: optionally supports writable mmap

32



symas |
LMDB Overview

e full ACID transaction semantics

« MVVCC concurrency control

— writers don't block readers, readers don't block
writers

— a pair of page pointers are used to point to the
current tree version

 single writer
- no need for callers to handle deadlocks or retries

33



symas |
LMDB Overview

* No undo/redo logs

- Uses Copy-on-Write

- Intermediate tree states are never visible, cannot be corrupted
by system crashes

* No garbage collection

- space freed by a transaction is recorded in a 2nd B+tree living
In the same space

— writers reuse whatever available free space as needed
* No tuning or administrative overhead

— zero-config

34



-Symas |
LMDB Overview

« Unrivalled read performance on any hardware and any data volume

Performance

30000 2000000
1800000

1600000
20000 1400000
1200000
15000 1000000 | Writes/Sec
800000 B Reads/Sec
600000
5000 400000
200000
0 — 0

Ops/Sec
l—l
o
=]
=]
(=]

P ©® LK L & XN
P & L & F K F G &
& F Q}B‘:\ & ® /\6*'\} D
v & § & @
v &

- 1 billion record DB, ~120GB, on HP DL585 G5 with 128GB RAM, 16 cores
- 16 read threads concurrent with 1 write thread



symas
Summary

* Persistent RAM Is approaching price parity with
regular DRAM, will be more common soon

e Current OS support is primitive and needs further
Improvement

* |f you enjoy low level programming, the design
constraints of writing an always-consistent data
structure may be interesting to explore

* Otherwise, just use LMDB and don't worry about it

36



symas

Questions?

37



