
Software Design for Persistent
Memory Systems

Howard Chu
CTO, Symas Corp. hyc@symas.com

2018-03-07

mailto:hyc@symas.com

2

Personal Intro

● Howard Chu
– Founder and CTO Symas Corp.

– Developing Free/Open Source software since
1980s

● GNU compiler toolchain, e.g. "gmake -j", etc.
● Many other projects...
● I never use a software package without contributing to it

– Worked for NASA/JPL, wrote software for Space
Shuttle, etc.

3

Personal Intro

● Career Highlights
– 2011- Author of LMDB, world's smallest, fastest, and most

reliable embedded database engine

– 1998- Main developer of OpenLDAP, world's most
scalable distributed data store

– 1995 Author of PC-Enterprise/Mac, world's fastest
AppleTalk stack and Appleshare file server

– 1993 Author of faster-than-realtime speech recognition
using Motorola 68030

– 1991 Inventor of parallel make support in GNU make

4

Topics

● What is Persistent Memory?
● What system-level support exists?
● How do we leverage this in applications?

5

What is Persistent Memory

● Non-volatile, doesn't lose contents when system
is powered off

● Can be thought of as battery-backed DRAM
– billed as byte-addressable storage, but really is still

constrained to cacheline granularity

– being used as a new layer in system memory
hierarchy, between regular DRAM and secondary
storage (SSD, HDD)

– ideally, will replace regular DRAM completely

6

What is Persistent Memory

7

What is Persistent Memory

● STT-MRAM is the leading technology for now
– performance equivalent to DRAM

– endurance approaching DRAM (10^12 vs 10^15 writes)

– ST-DDR3, ST-DDR4 DIMMs available - drop-in compatible
with DDR3/DDR4

– Still lags in density, 256Mbit parts reaching market now
● Fabricated on 40nm process
● Compared to 8Gbit DDR4 DRAM chips already mainstream, on

10nm process

– Production on 22nm process expected later this year

8

What is Persistent Memory

● Other possibilities exist
– actual battery-backed DRAM DIMMs (BBU DIMM)

● offered up to 72 hours of persistence
● deprecated, no longer marketed

– Flash-backed DRAM DIMMs (NVDIMM)
● typically with a super-capacitor onboard
● copies DRAM to flash on system shutdown

● All of these are more expensive than regular
DRAM

9

System-Level Support

● Requires both BIOS and OS support
– POST must use non-destructive memory test, or

just skip memory test

– Kernel must recognize NV memory

– Linux kernel boot args can be used to explicitly
mark memory as persistent

– Current state of OS support is extremely primitive

10

System-Level Support

● Kernel treats persistent memory as a block device
– you can create a filesystem on top and use it as a glorified

RAMdisk
● Congratulations, welcome to the state of the art of 1986.

– you can use it as cache dedicated to a particular set of
devices

● using dm-cache, bcache, flashcache, etc.
● but these solutions are written for Flash SSDs, and aren't optimal

for persistent RAM

– current designs assume only a small subset of system
memory is persistent

11

System-Level Support

● Future support must account for systems with
100% persistent memory
– Kernel page cache manager must be modified to

utilize hot cache contents left by previous bootup

– "persistent memory" must become just "memory" -
used for system-wide device caching, instead of
isolated in its own block device

12

System-Level Support

● Whether system is 100% persistent RAM or not,
memory should be managed by kernel and not require
direct management at user level
– current usage as distinct block device requires a user to

manually manage it
● explicitly copy files to it
● when the space gets full the user must choose some files to

delete, in order to make room for new files

– instead, used as part of the system cache, the OS can
page data in and out as needed, without any user
intervention

13

Application Design

● Mindset
● Design Concepts
● Implementation Choices
● Other Details

– Concurrency Control

– Free Space Management

– Byte Addressability

● Endgame

14

Application Design

● Requires a different mindset
– Should not view "memory" and "storage" as distinct

concepts - must adopt "single-level store"
● Storage and RAM are interchangeable, via memory-

mapping

– Data structures that are intended to be persistent
must be written atomically - interruption of updates
must not leave corrupt or inconsistent states

– Avoid temptation to take "memory-only" / "main
memory" design approach

15

Application Design

● Problems with "main memory" approach
– A law of computing: data always grows to exceed

the size of available space

– There will always be larger/slower/cheaper memory
in addition to fast in-core memory: there will always
be a hierarchy of storage

– You must design for growth, and take this hierarchy
into account

16

Design Concepts

● Essentially, persistent data structures must
provide ACID transaction semantics
– persistent RAM gives Durability, implicitly
– the rest is up to you

● Atomicity can be actual, or effective
– Actual: you only support modifications that can be

performed with a single atomic update
– Effective: you use undo/redo logs to allow recovery

from interrupted updates

17

Design Concepts

● If you go for "effective atomicity" you'll need to have
complex locking mechanisms to protect intermediate
update states

● Once you go down the path of complex locking, you
also have to deal with deadlocks, backoffs, and retries

● All of this involves a great deal of additional code on
top of the actual data structure code

● Complex locking will not scale well across multiple
CPU sockets

18

Design Concepts

● If you use undo/redo logs you'll need to build a robust
crash detection mechanism, as well as a crash recovery
procedure to recover from incomplete transactions

● The undo log will also be needed to execute transaction
abort/rollback in normal (non-crashed) operation

● The log will be a central bottleneck in all write
operations

● Logs will need explicit management - pruning/etc

19

Design Concepts

● Better approach is to use MVCC (Multi-Version
Concurrency Control) with a single pointer to
the current version
– Once a new version has been constructed, a single

atomic write to the version pointer can be used to
make it visible

– Since each transaction operates on its own version
of the data structure, transactions have perfect
Isolation

20

Design Concepts

● Best solution, based on constraints so far:
– data structure must be storage oriented, for growth - not a

memory-only structure

– data structure must have atomic update visibility

● Use a B+tree
– inherently suited to caching, memory hierarchy

– using Copy-on-Write, can expose a new modification simply
by updating a pointer to the root of a new tree version

● a new update can be simply aborted/rolled back just by omitting
the pointer update, no undo/redo logs needed

21

Implementation

● Successful implementation requires explicit
control over memory layout of data structures
– structures must be CPU cacheline aligned, both for

performance and for integrity

– this precludes implementing in most higher level
languages

22

Implementation

● We're now clearly talking about a storage library
– there's a lot of details to manage, but they can be

hidden in a library
– written in a low level language
– should use something like C

● easily callable from any other language
● mature, portable, flexible
● direct control over memory layout

– allows identical layout for "in-memory" and "on-disk" representation

23

More Design Choices

● Multi-process concurrency, or just multi-thread?
– Multi-thread in a single process is simpler

● doesn't require shared memory for interprocess coordination

– Multi-process concurrency is more flexible
● allows administrative tools to query and operate regardless of whether

the main application is running

● Single-writer or multiple writer?
– Single-writer is simpler, eliminates possibility of deadlocks
– Multi-writer requires complex locking, conflict detection

● and still boils down to single-writer anyway, given the requirement of
atomic visibility

24

Implementation

● Use mmap to expose data to callers
– Use a read-only mmap, otherwise random

overwrites will be persisted, causing unrecoverable
corruption

– Pointers to data in map can be returned directly to
callers on data fetch requests, thus avoiding
expensive malloc/copy operations

● This requires that data values are always stored
contiguously, even if values are larger than B+tree page
size

25

Implementation

● Can optionally use writable mmap
– Opens a window to corruption vulnerability

– Requires explicit cache flush instructions, to ensure
writes are pushed from CPU cache out to RAM (if not
using msync)

– No performance benefit over readonly mmap
● writing a page requires that it first get faulted in, wasted effort if

the entire page is going to be overwritten

– May not be worth the cost in reliability and portability
● forcing a CPU cache flush is highly system-dependent

26

Concurrency Control

● Systems commonly offer reader/writer semantics
– 1 writer can operate exclusively, or arbitrary number

of readers
– writer and readers cannot operate simultaneously

● Done properly, an MVCC-based design allows
readers to run wait-free, taking no locks
– writer should be able to operate concurrently with

arbitrary number of readers

27

Free Space Management

● With MVCC, storage space rapidly fills up with
old/obsolete versions of data

● Most applications will have no use for the old
versions

● Reclaiming space from obsolete versions will
be critical for long term usability

● "Background" garbage collection (GC) is a
commonly practiced approach but is not viable

28

Free Space Management

● Background GC assumes there's always spare CPU and
I/O capacity
– GC can consume more CPU and I/O bandwidth than the actual

user workload
● which then leads to requiring complex runtime profiling and throttling

implementations

– Thus it will either require over-provisioning of system resources,
or GC will always cause user-visible pauses in processing

● Better to track page usage in foreground and reuse old
pages when they become available
– Yields consistent write throughput without any pauses

29

Free Space Management

● Tracking page availability has a direct impact on
concurrency
– Must record which readers are referencing which old versions,

to know which old versions can be purged/reclaimed
– Could just use a simple counter, recording the oldest version

still in use
● but accessing the counter becomes a bottleneck for readers

– Better to use an array with one slot per reader
● array slots must be cacheline aligned
● slots can be updated by readers and checked by writers without

taking any locks

30

Byte Addressability

● Highly touted feature of NVRAM-based storage
● Largely a red herring

– Can be useful for current RAMdisk-style approaches,
but these are evolutionary dead ends

– Eventually the industry will wake up to the fact that
reinventing reset-survivable RAMdisks was a waste of
time and money

– NVRAM will eventually be integral to the system cache,
and the system cache is necessarily page-based

31

Endgame

● Based on the given design constraints:
– atomicity, persistence, robustness, simplicity,

efficiency

– single-level store, blurring the line between memory
and storage

● You'll end up with something that looks a lot like
LMDB

32

LMDB Overview

● LMDB "Lightning Memory-Mapped Database"
● embedded key/value store implemented with a

B+tree
● as the name indicates, it uses memory mapped

data
– defaults to read-only mmap

– zero-copy reads: retrieved data points directly into
mmap

– zero-copy writes: optionally supports writable mmap

33

LMDB Overview

● full ACID transaction semantics
● MVCC concurrency control

– writers don't block readers, readers don't block
writers

– a pair of page pointers are used to point to the
current tree version

● single writer
– no need for callers to handle deadlocks or retries

34

LMDB Overview

● No undo/redo logs
– Uses Copy-on-Write

– Intermediate tree states are never visible, cannot be corrupted
by system crashes

● No garbage collection
– space freed by a transaction is recorded in a 2nd B+tree living

in the same space

– writers reuse whatever available free space as needed

● No tuning or administrative overhead
– zero-config

35

LMDB Overview

● Unrivalled read performance on any hardware and any data volume

– 1 billion record DB, ~120GB, on HP DL585 G5 with 128GB RAM, 16 cores

– 16 read threads concurrent with 1 write thread

36

Summary

● Persistent RAM is approaching price parity with
regular DRAM, will be more common soon

● Current OS support is primitive and needs further
improvement

● If you enjoy low level programming, the design
constraints of writing an always-consistent data
structure may be interesting to explore

● Otherwise, just use LMDB and don't worry about it

37

Questions?

