
Actors or Not
Async Event Architectures

Yaroslav Tkachenko

Senior Software Engineer at Demonware (Activision)

Background

• 10 years in the industry

• ~1 year at Demonware/Activision, 5 years at Bench Accounting

• Mostly web, back-end, platform, infrastructure and data things

• @sap1ens / sap1ens.com

• Talk to me about data pipelines, stream processing and the Premier League ;-)

Two stories

Context: sync vs async communication

Service A Service B
POST /foo
service-b.example.com

“Easy” way – HTTP (RPC) API

Context: sync vs async communication

• Destination – where to send request?

• Service discovery

• Tight coupling

• Time – expect reply right away?

• Failure – always expect success?

• Retries

• Back-pressure

• Circuit breakers

You cannot make

synchronous requests

over the network

behave like local ones

Context: async communication styles

• Point-to-Point Channel

• One sender

• One receiver

• Publish-Subscribe Channel (Broadcast)

• One publisher

• Multiple subscribers

Context: Events vs Commands

• Event

• Simply a notification that something happened in the past

• Command

• Request to invoke some functionality (“RPC over messaging”)

• 469+ million gamers

• 3.2+ million concurrent online gamers

• 100+ games

• 300,000 requests per second at peak

• Average query response time of <.02 second

• 630,000+ metrics a minute

• 132 billion+ API calls per month

Demonware by the numbers

• Core game services including:

• Auth
• Matchmaking
• Leaderboards
• Marketplace
• Loot & Rewards
• Storage
• Etc.

• Erlang for networking layer, Python for application layer

• Still have a big application monolith, but slowly migrating to independent
services (SOA)

Demonware Back-end Services

• Lots of synchronous request/response communication between the monolith
and the services using:

• HTTP
• RPC

• The requesting process:

• conceptually knows which service it wants to call into

• is aware of the action that it is requesting, and its effects

• generally needs to be notified of the request’s completion and any
associated information before proceeding with its business logic

DW Services: Synchronous communication

• Using Domain Events

• Communication model assumes the following:

• The event may need to be handled by zero or more service processes,
each with different use cases; the process that generates the event does
not need to be aware of them

• The process that generates the event does not need to be aware of
what actions will be triggered, and what their effects might be

• The process that generates the event does not need to be notified of
the handlers’ completion before proceeding with its business logic

• Seamless integration with the Data Pipeline / Warehouse

DW Services: Asynchronous communication*

Domain Driven Design

Application
Core

Event
Adapter

E
ve

nt
s

Commands

E
ve

nt
s

HTTP
Adapter

CLI
Adapter

Kafka

Service

Kafka

Kafka

Publish-Subscribe OR Point-to-Point is a decision made by consumers

Kafka

• Service name is used as a topic name in Kafka

• Services have to explicitly subscribe to interested topics on startup (some
extra filtering is also supported)

• All messages are typically partitioned by a user ID to preserve order

Event Dispatcher

Application
Core

Event
Dispatcher

Kafka topic

Partitions

Kafka Python
Consumer
(librdkafka)

Local
buffer

queue

queue

queue

Tornado
Queues

Event Dispatcher

 1 @demonata.event.source(
 2 name='events_from_service_a'
 3)
 4 class ServiceAEventsDispatcher (object):
 5 def __init__(self, my_app_service):
 6 self._app = my_app_service
 7
 8 @demonata.event.schema(
 9 name='service.UserUpdated' ,
 10 ge_version= '1.2.3',
 11 event_dto=UserUpdated
 12)
 13 def on_user_updated(self, message, event):
 14 assert isinstance(message, DwPublishedEvent)
 15 # ...

Publishing Events

The following reliability modes are supported:

• Fire and forget, relying on Kafka producer (acks = 0, 1, all)

• At least once (guaranteed), using remote EventStore backed by a DB

• At least once (intermediate), using local EventStore

Event Publisher

Application
Core

Event
Publisher

Kafka topic

PartitionsKafka Python
Producer
(librdkafka)

Event
Store Event

Producer

Publishing Events

 1 @demonata.coroutine
 2 def handle_event_atomically (self, event_to_process):
 3 entity_key = self. determine_entity_key (event_to_process)
 4 entity = self.db. read(entity_key)
 5
 6 some_data = yield self.perform_some_async_io_read ()
 7 new_entity, new_event = self. apply_business_logic (
 8 entity, event_to_process, some_data
 9)
 10
 11 # single-shard MySQL transaction:
 12 with self.db. trans(shard_key=entity_key):
 13 db.save(new_entity)
 14 self.publisher. publish(new_event)
 15 commit()

Event Framework in Demonware

• Decorator-driven consumers using callbacks

• Reliable producers

• Non-blocking IO using Tornado

• Apache Kafka as a transport

But still…

Can we do better?

 1 @demonata.event.source(
 2 name='events_from_service_a'
 3)
 4 class ServiceAEventsDispatcher (object):
 5 def __init__(self, my_app_service):
 6 self._app = my_app_service
 7
 8 @demonata.event.schema(
 9 name='service.UserUpdated' ,
 10 ge_version= '1.2.3',
 11 event_dto=UserUpdated
 12)
 13 def on_user_updated(self, message, event):
 14 assert isinstance(message, DwPublishedEvent)
 15 # ...

Event Dispatcher

This is just
a boilerplate

Callback that
should pass
an event to
the actual
application

Can we create

producers and

consumers that support

message-passing

natively?

Actors

• Communicate with asynchronous messages instead of method invocations

• Manage their own state

• When responding to a message, can:

• Create other (child) actors

• Send messages to other actors

• Stop (child) actors or themselves

Actors

Actors: Erlang

 1 loop() ->
 2 receive
 3 {From, Msg} ->
 4 io:format("received ~p~n", [Msg]),
 5
 6 From ! "got it";
 7 end.

Actors: Akka

 1 class MyActor extends Actor with ActorLogging {
 2 def receive = {
 3 case msg => {
 4 log.info(s"received $msg")
 5
 6 sender() ! "got it"
 7 }
 8 }
 9 }

Actor-to-Actor communication

• Asynchronous and non-blocking message-passing

• Doesn’t mean senders must wait indefinitely - timeouts can be used

• Location transparency

• Enterprise Integration Patterns!

http://www.enterpriseintegrationpatterns.com/patterns/messaging/

Bench Accounting

Bench Accounting Online Services

• Classic SAAS application used by the customers and internal bookkeepers:

• Double-entry bookkeeping with sophisticated reconciliation engine
and reporting [no external software]

• Receipt collection and OCR

• Integrations with banks, statement providers, Stripe, Shopify, etc.

• Enterprise Java monolith transitioning to Scala microservices (with Akka)

• Legacy event-based system built for notifications

Bench Accounting Legacy Eventing

• Multiple issues:

• Designed for a few specific use-cases, schema is not extendable

• Wasn’t built for microservices

• Tight coupling

• New requirements:

• Introduce real-time messaging (web & mobile)

• Add a framework for producing and consuming Domain Events and
Commands (both point-to-point and broadcasts)

• Otherwise very similar to the Demonware’s async communication
model

Bench Accounting Eventing System

ActiveMQ

Eventing
service

Service
A

Service
B

queue
queue

or
topic

IntegrationsEvent
store

ActiveMQ

Point-to-Point Publish-Subscribe

ActiveMQ

• Service name is used as a queue or topic name in ActiveMQ, but there is a also a
topic for global events

• Services can subscribe to interested queues or topics any time a new actor is
created

• Supports 3 modes of operations:

• Point-to-Point channel using a queue (perfect for Commands)

• Publish-Subscribe channel with guaranteed delivery using a Virtual topic

• Global Publish-Subscribe channel with guaranteed delivery using a Virtual
topic

Secret sauce: Apache Camel

• Integration framework that implements Enterprise Integration Patterns

• akka-camel is an official Akka library (now deprecated, Alpakka is a modern
alternative)

• Can be used with any JVM language

• “The most unknown coolest library out there”: JM (c)

Event Listener

akka-camel
ActiveMQ
queue or

topic

ActiveMQ
Consumer

prefetch
buffer

Actor

Event Listener

 1 class CustomerService extends EventingConsumer {
 2 def endpointUri = "activemq:Consumer.CustomerService.VirtualTopic.events"
 3
 4 def receive = {
 5 case e: CamelMessage if e.isEvent && e.name == “some.event.name” => {
 6 self ! DeleteAccount(e.clientId, sender())
 7 }
 8
 9 case DeleteAccount(clientId, originalSender) => {
 10 // ...
 11 }
 12 }
 13 }

Event Sender

akka-camel ActiveMQ
queue or

topic

ActiveMQ
ProducerActor

Event Sender

 1 // Broadcast
 2 EventingClient
 3 .buildSystemEvent(Event.BankError, userId, Component.ServiceA)
 4 .send(true)
 5
 6 // Direct
 7 EventingClient
 8 .buildSystemEventWithAsset (Event.BankError, userId, Component.ServiceB)
 9 .buildUrlAsset("http://example.com")
 10 .sendDirect("reporting")

Eventing Service

Event
Recorder

Event
Receiver

Event
Forwarder

Event
Reader

HTTP
API

Events
DAO

Event
Store

Integrations

A
ct

iv
eM

Q
 q

ue
ue

ACK

Send

Receive

Eventing Service

So, we do we need this “router” service?

• Routing is handled in one place

• Lightweight consumers and producers

• The same Event Store is used for all services

Event framework in Bench Accounting

• Actor-based consumers and producers using Apache Camel

• Producer with ACKs

• Non-blocking IO

• Apache ActiveMQ as a transport

Lessons learned

So, Actors

• Semantics is important! Natural message-passing in Actors is a huge
advantage

• Asynchronous communication and location transparency by default makes it
easy to move actors between service boundaries

• We could also talk about supervision hierarchies and “Let it crash”
philosophy, excellent concurrency, networking features, etc… next time! You
can start with basics

Recommendations

• Domain Driven Design and Enterprise Integration Patterns are great!

• Understand your Domain space and choose the concepts you need to
support: Events, Commands, Documents or all of them

• Explicitly handle all possible failures. They will happen eventually

• Event Stores can be used for so many things! Tracing and debugging,
auditing, data analytics, etc.

• Actors or not? It really depends. It’s possible to build asynchronous,
non-blocking event frameworks in Java, Python, Node.js or a lot of the other
languages, but actors are asynchronous and message-based by default

Recommendations

• Carefully choose the transport layer. Apache Kafka can handle an impressive
scale, but many messaging features are missing / support just introduced

• Understand what you need to optimize: latency or throughput. You might
need to introduce multiple channels with different characteristics

• Do you really need exactly-once semantics?

• Message formats and schemas are extremely important! Choose binary
formats (Protobuf, Avro) AND/OR make sure to use a schema registry and
design a schema evolution strategy

• Consider splitting your messages into an envelope (metadata) and a payload.
Events and Commands could use the same envelope

Challenges

• We’re too attached to the synchronous request/response paradigm. It’s
everywhere - in the libraries, frameworks, standards. It takes time to learn
how to live in the asynchronous world

• High coupling will kill you. Routing is not a problem when you have a
handful of services (producers/consumers), but things get really complicated
with 10+ services. Try to avoid coupling by using Events as much as possible
and stay away from Commands unless you really need them

• Managing a properly partitioned, replicated and monitored message broker
cluster is still a non-trivial problem. Consider using managed services if your
Ops resources are limited

Challenges

• It’s very straightforward to implement event-based communication for
writes, but harder for reads. You’ll probably end up with some sort of DB
denormalization, in-memory hash join tables, caching or all of the above

• When you have dozens of producers and consumer scattered across the
service it becomes challenging to see the full picture. State and sequence
diagrams can help with capturing business use-cases, distributed tracing
becomes almost a must-have

• When things break you won’t notice them immediately without a proper
monitoring and alerting. Considering covering all critical business use-cases
first

That signup page...

Thanks

 Davide Romani (Demonware)

 Pavel Rodionov (Bench Accounting)

Questions?

@sap1ens | sap1ens.com

