
Cluster Consensus

When Aeron Met Raft

Martin Thompson - @mjpt777



What does “Consensus” mean?



con•sen•sus
noun \ kən-ˈsen(t)-səs \

: general agreement : unanimity

Source: http://www.merriam-webster.com/



con•sen•sus
noun \ kən-ˈsen(t)-səs \

: general agreement : unanimity

: the judgment arrived at by most of those 

concerned

Source: http://www.merriam-webster.com/



https://raft.github.io/raft.pdf



https://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-raft.pdf



Raft in a Nutshell



Roles

CandidateFollower Leader



RPCs

1. RequestVote RPC
Invoked by candidates to gather votes

2. AppendEntries RPC
Invoked by leader to replicate and heartbeat



Safety Guarantees

• Election Safety

• Leader Append-Only

• Log Matching

• Leader Completeness

• State Machine Safety



Monotonic Functions



Version all the things!



Clustering Aeron



Is it Guaranteed Delivery™ ???



What is the “Architect” really looking for?



Replicated State Machines

=>

Redundant Deterministic Services



Client Client Client Client Client

Service



Client Client Client Client Client

Service



Client Client Client Client Client

Consensus 

Module

Service

Consensus 

Module

Service

Consensus 

Module

Service



NIO Pain



FileChannel channel = null;

try

{

channel = FileChannel.open(directory.toPath());

}

catch (final IOException ignore)

{

}

if (null != channel)

{

channel.force(true);

}



Directory Sync

Files.force(directory.toPath(), true);



Performance



Let’s consider the application of 

an RPC design approach



Client Client Client Client Client

Consensus 

Module

Service

Consensus 

Module

Service

Consensus 

Module

Service



Should we consider

concurrency and parallelism

with Replicated State Machines?



“Concurrency is about dealing with lots of 

things at once. Parallelism is about doing 

lots of things at once.”

– Rob Pike



1. Parallel is the opposite of Serial

2. Concurrent is the opposite of Sequential

3. Vector is the opposite of Scalar

– John Gustafson



Fetch

Time

Instruction Pipelining



Fetch Decode

Time

Instruction Pipelining



Fetch Decode Execute

Time

Instruction Pipelining



Fetch Decode Execute Retire

Time

Instruction Pipelining



Fetch Decode Execute Retire

Time

Fetch Decode Execute Retire

Instruction Pipelining



Fetch Decode Execute Retire

Time

Fetch Decode Execute Retire

Fetch Decode Execute Retire

Instruction Pipelining



Fetch Decode Execute Retire

Time

Fetch Decode Execute Retire

Fetch Decode Execute Retire

Fetch Decode Execute Retire

Instruction Pipelining



Order

Time

Consensus Pipeline



Order Log

Time

Consensus Pipeline



Order Log Transmit

Time

Consensus Pipeline



Order Log Transmit Commit

Time

Consensus Pipeline



Order Log Transmit Commit

Time

Consensus Pipeline

Execute



Order Log Transmit Commit

Time

Consensus Pipeline

Execute

Order Log Transmit Commit Execute



Order Log Transmit Commit

Time

Consensus Pipeline

Execute

Order Log Transmit Commit Execute

Order Log Transmit Commit Execute



Client Client Client Client Client

Consensus 

Module

Service

Consensus 

Module

Service

Consensus 

Module

Service



Client Client Client Client Client

Consensus 

Module

Service

Consensus 

Module

Service

Consensus 

Module

Service



NIO Pain



ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putInt(index, value);



ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putBytes(index, bytes);



ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putBytes(index, bytes);



How can Aeron help?



Message Index => Byte Index



Multicast, MDC, and Spy

based Messaging



Counters and Bounded 

Consumption



Binary Protocols &

Zero intermediate copies



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Batching – Amortising Costs

Average overhead

per item or operation

in batch



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Batching – Amortising Costs

• System calls

• Network round trips

• Disk writes

• Expensive calculations



Interesting Features



Agents and Threads



Timers



Back Pressure and Stashed Work



Replay and Snapshots



Multiple Services on the

same stream



Client Client Client Client Client

Consensus 

Module

Service

Consensus 

Module

Service

Consensus 

Module

Service



Client Client Client Client Client

Consensus 

Module

Service

Consensus 

Module

Service

Consensus 

Module

Service
Service

Service
Service

Service
Service

Service



In Closing



NIO Pain



DirectByteBuffer MappedByteBuffer

MappedByteBuffer DirectByteBuffer





https://github.com/real-logic/aeron

Twitter: @mjpt777

“A distributed system is one in which the failure 
of a computer you didn't even know existed
can render your own computer unusable.”

- Leslie Lamport

Questions?

https://github.com/real-logic/aeron

