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What does “Consensus” mean?



con•sen•sus
noun \ kən-ˈsen(t)-səs \

: general agreement : unanimity

Source: http://www.merriam-webster.com/



con•sen•sus
noun \ kən-ˈsen(t)-səs \

: general agreement : unanimity

: the judgment arrived at by most of those 

concerned

Source: http://www.merriam-webster.com/



https://raft.github.io/raft.pdf



https://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-raft.pdf



Raft in a Nutshell



Roles

CandidateFollower Leader



RPCs

1. RequestVote RPC
Invoked by candidates to gather votes

2. AppendEntries RPC
Invoked by leader to replicate and heartbeat



Safety Guarantees

• Election Safety

• Leader Append-Only

• Log Matching

• Leader Completeness

• State Machine Safety



Monotonic Functions



Version all the things!



Clustering Aeron



Is it Guaranteed Delivery™ ???



What is the “Architect” really looking for?



Replicated State Machines

=>

Redundant Deterministic Services
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NIO Pain



FileChannel channel = null;

try

{

channel = FileChannel.open(directory.toPath());

}

catch (final IOException ignore)

{

}

if (null != channel)

{

channel.force(true);

}



Directory Sync

Files.force(directory.toPath(), true);



Performance



Let’s consider the application of 

an RPC design approach
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Should we consider

concurrency and parallelism

with Replicated State Machines?



“Concurrency is about dealing with lots of 

things at once. Parallelism is about doing 

lots of things at once.”

– Rob Pike



1. Parallel is the opposite of Serial

2. Concurrent is the opposite of Sequential

3. Vector is the opposite of Scalar

– John Gustafson
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Order
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NIO Pain



ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putInt(index, value);



ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putBytes(index, bytes);



ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putBytes(index, bytes);



How can Aeron help?



Message Index => Byte Index



Multicast, MDC, and Spy

based Messaging



Counters and Bounded 

Consumption



Binary Protocols &

Zero intermediate copies
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• System calls

• Network round trips

• Disk writes

• Expensive calculations



Interesting Features



Agents and Threads



Timers



Back Pressure and Stashed Work



Replay and Snapshots



Multiple Services on the

same stream
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In Closing



NIO Pain



DirectByteBuffer MappedByteBuffer

MappedByteBuffer DirectByteBuffer





https://github.com/real-logic/aeron

Twitter: @mjpt777

“A distributed system is one in which the failure 
of a computer you didn't even know existed
can render your own computer unusable.”

- Leslie Lamport

Questions?

https://github.com/real-logic/aeron

