
A SOCIAL NETWORK ON STREAMS
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DRIVETRIBE

DRIVETRIBE

▸ The world biggest motoring 
community.

▸ A social platform for petrolheads.

▸ By Clarkson, Hammond and May.
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DRIVETRIBE

DRIVETRIBE

▸ A content destination at the core.

▸ Users consume feeds of content: 
images, videos, long-form articles.

▸ Content is organised in 
homogenous categories called 
“tribes”.

▸ Different users have different 
interests and the tribe model allows 
to mix and match at will.

3



DRIVETRIBE

DRIVETRIBE ARTICLE

▸ Single article by James May.

▸ Contains a plethora of content and 
engagement information.

▸ What do we need to compute an 
aggregate like this?
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DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])
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DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countViews(id: Id[Article])

▸ countComments(id: Id[Article])

▸ countBumps(id: Id[Article])
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DRIVETRIBE

DRIVETRIBE FEED OF ARTICLES

▸ rankArticles(forUserId).flatMap { a 
=> … }

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countViews(id: Id[Article])

▸ …
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DRIVETRIBE

QUINTESSENTIAL PREREQUISITES

▸ Scalable. Jeremy Clarkson has 7.2M Twitter followers. Cannot really hack 
it and worry about it later.

▸ Performant. Low latency is key and mobile networks add quite a bit of it.

▸ Flexible. Almost nobody gets it right the first time around. The ability to 
iterate is paramount.

▸ Maintainable. Spaghetti code works like interest on debt.
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DRIVETRIBE

THREE TIER APPROACH

▸ Clients interact with a fleet of stateless servers 
(aka “API” servers or “Backend”) via HTTP 
(which is stateless).

▸ Global shared mutable state (aka the Database). 

▸ Starting simple: Store data in a DB.

▸ Starting simple: Compute the aggregated views 
on the fly.
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DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User]) 

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countComments(id: Id[Article]) 

▸ countBumps(id: Id[Article])

▸ countViews(id: Id[Article])
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DRIVETRIBE

READ TIME AGGREGATION

▸ (6 queries per Item) x (Y items per 
page)

▸ Cost of ranking and personalisation.

▸ Quite some work at read time.

▸ Slow. Not really Performant.
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DRIVETRIBE

WRITE TIME AGGREGATION

▸ Compute the aggregation at write 
time.

▸ Then a single query can fetch all the 
views at once. That scales.
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DRIVETRIBE

WRITE TIME AGGREGATION

▸ Compute the aggregation at write 
time.

▸ Then a single query can fetch all the 
views at once. That scales.
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DRIVETRIBE

WRITE TIME AGGREGATION - EVOLUTION

▸ sendNotification
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WRITE TIME AGGREGATION - EVOLUTION

▸ sendNotification

▸ updateUserStats
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DRIVETRIBE

WRITE TIME AGGREGATION - EVOLUTION

▸ sendNotification

▸ updateUserStats.

▸ What if we have a cache?

▸ Or a different database for search?
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DRIVETRIBE

WRITE TIME AGGREGATION

▸ A simple user action is triggering a 
potentially endless sequence of side 
effects.

▸ Most of which need network IO. 

▸ Many of which can fail.
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DRIVETRIBE

ATOMICITY

▸ What happens if one of them fails? 
What happens if the server fails in 
the middle?

▸ We may have transaction support in 
the DB, but what about external 
systems?

▸ Inconsistent.
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DRIVETRIBE

CONCURRENCY

▸ Concurrent mutations on a global 
shared state entail race conditions.

▸ State mutations are destructive and 
can not be (easily) undone.

▸ A bug can corrupt the data 
permanently.
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DRIVETRIBE

ITALIAN PASTA

▸ Model evolution becomes difficult. 
Reads and writes are tightly 
coupled.

▸ Migrations are scary.

▸ This is neither Extensible nor 
Maintainable.
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DRIVETRIBE

DIFFERENT APPROACH

▸ Let’s take a step back and try to decouple things.

▸ Clients send events to the API: “John liked Jeremy’s post”, “Maria updated 
her profile” 

▸ Events are immutable. They capture a user action at some point in time.

▸ Every application state instance can be modelled as a projection of those 
events.
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DRIVETRIBE

▸ Persisting those yields an append-
only log of events.

▸ An event reducer can then produce 
application state instances.

▸ Even retroactively. The log is 
immutable.

▸ This is event sourcing.
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DRIVETRIBE

▸ The write-time model (command 
model) and the read time model 
(query model) can be separated.

▸ Decoupling the two models opens the 
door to more efficient, custom 
implementations.

▸ This is known as Command Query 
Responsibility Segregation aka 
CQRS.
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DRIVETRIBE

EVENT SOURCING APPROACH
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EVENT SOURCING APPROACH
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Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

And so on..

Like!!
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Like!! Extensibility?
Maintainability?



DRIVETRIBE

EVENT SOURCING APPROACH
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Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!!

Performance?



DRIVETRIBE

EVENT SOURCING APPROACH
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Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!! Atomicity?
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EVENT SOURCING APPROACH
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Store Like Event
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Like!!
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WE NEED A LOG



DRIVETRIBE

APACHE KAFKA

▸ Distributed, fault-tolerant, durable and fast append-only log.

▸ Can scale the thousands of nodes, producers and consumers.

▸ Each business event type can be stored in its own topic.
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WE NEED A STREAM 
PROCESSOR



DRIVETRIBE

APACHE FLINK

▸ Scalable, performant, mature.

▸ Elegant high level APIs in Scala.

▸ Powerful low level APIs for advanced tuning.

▸ Multiple battle-tested integrations.

▸ Very nice and active community.
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WE NEED  DATASTORE



DRIVETRIBE

ELASTICSEARCH

▸ Horizontally scalable document store.

▸ Rich and expressive query language. 

▸ Dispensable. Can be replaced.
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WE NEED AN API



DRIVETRIBE

AKKA HTTP

▸ Asynchronous web application framework.

▸ Written in Scala.

▸ Very expressive routing DSL.

▸ Any modern web application framework would do.
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DRIVETRIBE

EVENT SOURCING IN PRACTICE
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Store Raw events Consume raw events

Produce aggregated 
views 

Retrieve aggregated 
views
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Store Raw events Consume raw events

Produce aggregated 
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Retrieve aggregated 
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EVENT SOURCING IN PRACTICE
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DRIVETRIBE

BLUE/GREEN APPROACH
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MIRROR



A REAL WORLD EXAMPLE



DRIVETRIBE

COUNTING BUMPS

▸ Thousands of people like the fact that 
Jeremy Clarkson is a really tall guy

▸ Users can “bump” a post if they like it
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DRIVETRIBE

EVENT SOURCING IN PRACTICE
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Store Raw events Consume raw events

Produce aggregated 
views 

Retrieve aggregated 
views



DRIVETRIBE

COUNTING BUMPS
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DRIVETRIBE

COUNTING BUMPS - FIRST ATTEMPT
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DRIVETRIBE

COUNTING BUMPS - FIRST ATTEMPT
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▸ Use Flink with at least once 
semantics

▸ Our system is eventually consistent



DRIVETRIBE

WHAT DO WE KNOW ABOUT OUT COUNTER?
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▸ we know we’re doing some kind of combine operation over States
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▸ we know we’re doing some kind of combine operation over States

▸ we want our counter to be idempotent:  a |+| a === a

WHAT DO WE KNOW ABOUT OUT COUNTER?



DRIVETRIBE 64

▸ we know we’re doing some kind of combine operation over States

▸ we want our counter to be idempotent:  a |+| a === a

▸ we also want our counter to be associative:                                                      
a |+| (b |+| c) === (a |+| b) |+| c

WHAT DO WE KNOW ABOUT OUT COUNTER?



DRIVETRIBE

BAND ALGEBRA
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▸ Closed

▸ Idempotent

▸ Associative



DRIVETRIBE

COUNTING BUMPS - SECOND ATTEMPT
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DRIVETRIBE

COUNTING BUMPS - SECOND ATTEMPT
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▸ if all components of a case 
class have a band then so does 
the case class

▸ would normally bring in Set 
implementation from a library

▸ normally that library would have 
a law testing module



DRIVETRIBE

COUNTING BUMPS - PUTTING IT TOGETHER
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DRIVETRIBE

OTHER ALGEBRAS WE USE
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▸ Adding events: Semigroup/Monoid

▸ Duplicate events: Band

▸ Out of order and duplicate events: Semilattice



FIN


