
A SOCIAL NETWORK ON STREAMS

DRIVETRIBE ENGINEERING

DRIVETRIBE

DRIVETRIBE

▸ The world biggest motoring
community.

▸ A social platform for petrolheads.

▸ By Clarkson, Hammond and May.

2

DRIVETRIBE

DRIVETRIBE

▸ A content destination at the core.

▸ Users consume feeds of content:
images, videos, long-form articles.

▸ Content is organised in
homogenous categories called
“tribes”.

▸ Different users have different
interests and the tribe model allows
to mix and match at will.

3

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ Single article by James May.

▸ Contains a plethora of content and
engagement information.

▸ What do we need to compute an
aggregate like this?

4

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

5

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

6

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

7

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countViews(id: Id[Article])

8

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countViews(id: Id[Article])

▸ countComments(id: Id[Article])

9

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countViews(id: Id[Article])

▸ countComments(id: Id[Article])

▸ countBumps(id: Id[Article])

10

DRIVETRIBE

DRIVETRIBE FEED OF ARTICLES

▸ rankArticles(forUserId).flatMap { a
=> … }

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countViews(id: Id[Article])

▸ …

11

DRIVETRIBE

QUINTESSENTIAL PREREQUISITES

▸ Scalable. Jeremy Clarkson has 7.2M Twitter followers. Cannot really hack
it and worry about it later.

▸ Performant. Low latency is key and mobile networks add quite a bit of it.

▸ Flexible. Almost nobody gets it right the first time around. The ability to
iterate is paramount.

▸ Maintainable. Spaghetti code works like interest on debt.

12

DRIVETRIBE

THREE TIER APPROACH

▸ Clients interact with a fleet of stateless servers
(aka “API” servers or “Backend”) via HTTP
(which is stateless).

▸ Global shared mutable state (aka the Database).

▸ Starting simple: Store data in a DB.

▸ Starting simple: Compute the aggregated views
on the fly.

13

DRIVETRIBE

DRIVETRIBE ARTICLE

▸ getUser(id: Id[User])

▸ getTribe(id: Id[Tribe])

▸ getArticle(id: Id[Article])

▸ countComments(id: Id[Article])

▸ countBumps(id: Id[Article])

▸ countViews(id: Id[Article])

14

DRIVETRIBE

READ TIME AGGREGATION

▸ (6 queries per Item) x (Y items per
page)

▸ Cost of ranking and personalisation.

▸ Quite some work at read time.

▸ Slow. Not really Performant.

15

DRIVETRIBE

WRITE TIME AGGREGATION

▸ Compute the aggregation at write
time.

▸ Then a single query can fetch all the
views at once. That scales.

16

DRIVETRIBE

WRITE TIME AGGREGATION

▸ Compute the aggregation at write
time.

▸ Then a single query can fetch all the
views at once. That scales.

17

DRIVETRIBE

WRITE TIME AGGREGATION

▸ Compute the aggregation at write
time.

▸ Then a single query can fetch all the
views at once. That scales.

18

DRIVETRIBE

WRITE TIME AGGREGATION

▸ Compute the aggregation at write
time.

▸ Then a single query can fetch all the
views at once. That scales.

19

DRIVETRIBE

WRITE TIME AGGREGATION - EVOLUTION

▸ sendNotification

20

DRIVETRIBE

WRITE TIME AGGREGATION - EVOLUTION

▸ sendNotification

▸ updateUserStats

21

DRIVETRIBE

WRITE TIME AGGREGATION - EVOLUTION

▸ sendNotification

▸ updateUserStats.

▸ What if we have a cache?

▸ Or a different database for search?

22

DRIVETRIBE

WRITE TIME AGGREGATION

▸ A simple user action is triggering a
potentially endless sequence of side
effects.

▸ Most of which need network IO.

▸ Many of which can fail.

23

DRIVETRIBE

ATOMICITY

▸ What happens if one of them fails?
What happens if the server fails in
the middle?

▸ We may have transaction support in
the DB, but what about external
systems?

▸ Inconsistent.

24

Atomicity?

DRIVETRIBE

CONCURRENCY

▸ Concurrent mutations on a global
shared state entail race conditions.

▸ State mutations are destructive and
can not be (easily) undone.

▸ A bug can corrupt the data
permanently.

25

Concurrency?

DRIVETRIBE

ITALIAN PASTA

▸ Model evolution becomes difficult.
Reads and writes are tightly
coupled.

▸ Migrations are scary.

▸ This is neither Extensible nor
Maintainable.

26

 Extensibility?

DRIVETRIBE

DIFFERENT APPROACH

▸ Let’s take a step back and try to decouple things.

▸ Clients send events to the API: “John liked Jeremy’s post”, “Maria updated
her profile”

▸ Events are immutable. They capture a user action at some point in time.

▸ Every application state instance can be modelled as a projection of those
events.

27

DRIVETRIBE

▸ Persisting those yields an append-
only log of events.

▸ An event reducer can then produce
application state instances.

▸ Even retroactively. The log is
immutable.

▸ This is event sourcing.

28

DRIVETRIBE

▸ The write-time model (command
model) and the read time model
(query model) can be separated.

▸ Decoupling the two models opens the
door to more efficient, custom
implementations.

▸ This is known as Command Query
Responsibility Segregation aka
CQRS.

29

DRIVETRIBE

EVENT SOURCING APPROACH

30

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

31

Store Like Event

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

32

Store Like Event ArticleStatsReducer

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

33

Store Like Event ArticleStatsReducer
NotificationReducer

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

34

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

35

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

And so on..

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

36

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!!

DRIVETRIBE

EVENT SOURCING APPROACH

37

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!! Extensibility?
Maintainability?

DRIVETRIBE

EVENT SOURCING APPROACH

38

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!!

Performance?

DRIVETRIBE

EVENT SOURCING APPROACH

39

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!! Atomicity?

DRIVETRIBE

EVENT SOURCING APPROACH

40

Store Like Event
ArticleStatsReducer

NotificationReducer

UserStatsReducer

Sky Is the limitGet Articles

Like!!

Concurrency?

IMPLEMENTATION?

WE NEED A LOG

DRIVETRIBE

APACHE KAFKA

▸ Distributed, fault-tolerant, durable and fast append-only log.

▸ Can scale the thousands of nodes, producers and consumers.

▸ Each business event type can be stored in its own topic.

43

WE NEED A STREAM
PROCESSOR

DRIVETRIBE

APACHE FLINK

▸ Scalable, performant, mature.

▸ Elegant high level APIs in Scala.

▸ Powerful low level APIs for advanced tuning.

▸ Multiple battle-tested integrations.

▸ Very nice and active community.

45

WE NEED DATASTORE

DRIVETRIBE

ELASTICSEARCH

▸ Horizontally scalable document store.

▸ Rich and expressive query language.

▸ Dispensable. Can be replaced.

47

WE NEED AN API

DRIVETRIBE

AKKA HTTP

▸ Asynchronous web application framework.

▸ Written in Scala.

▸ Very expressive routing DSL.

▸ Any modern web application framework would do.

49

DRIVETRIBE

EVENT SOURCING IN PRACTICE

50

Store Raw events Consume raw events

Produce aggregated
views

Retrieve aggregated
views

DRIVETRIBE

EVENT SOURCING IN PRACTICE

51

Store Raw events Consume raw events

Produce aggregated
views

Retrieve aggregated
views

Stateful

DRIVETRIBE

EVENT SOURCING IN PRACTICE

52

Store Raw events Consume raw events

Produce aggregated
views

Retrieve aggregated
views

DRIVETRIBE

BLUE/GREEN APPROACH

53

MIRROR

A REAL WORLD EXAMPLE

DRIVETRIBE

COUNTING BUMPS

▸ Thousands of people like the fact that
Jeremy Clarkson is a really tall guy

▸ Users can “bump” a post if they like it

55

DRIVETRIBE

EVENT SOURCING IN PRACTICE

56

Store Raw events Consume raw events

Produce aggregated
views

Retrieve aggregated
views

DRIVETRIBE

COUNTING BUMPS

57

DRIVETRIBE

COUNTING BUMPS - FIRST ATTEMPT

58

DRIVETRIBE

COUNTING BUMPS - FIRST ATTEMPT

59

DRIVETRIBE

COUNTING BUMPS - FIRST ATTEMPT

60

▸ Use Flink with at least once
semantics

DRIVETRIBE

COUNTING BUMPS - FIRST ATTEMPT

61

▸ Use Flink with at least once
semantics

▸ Our system is eventually consistent

DRIVETRIBE

WHAT DO WE KNOW ABOUT OUT COUNTER?

62

▸ we know we’re doing some kind of combine operation over States

DRIVETRIBE 63

▸ we know we’re doing some kind of combine operation over States

▸ we want our counter to be idempotent: a |+| a === a

WHAT DO WE KNOW ABOUT OUT COUNTER?

DRIVETRIBE 64

▸ we know we’re doing some kind of combine operation over States

▸ we want our counter to be idempotent: a |+| a === a

▸ we also want our counter to be associative:
a |+| (b |+| c) === (a |+| b) |+| c

WHAT DO WE KNOW ABOUT OUT COUNTER?

DRIVETRIBE

BAND ALGEBRA

65

▸ Closed

▸ Idempotent

▸ Associative

DRIVETRIBE

COUNTING BUMPS - SECOND ATTEMPT

66

DRIVETRIBE

COUNTING BUMPS - SECOND ATTEMPT

67

▸ if all components of a case
class have a band then so does
the case class

▸ would normally bring in Set
implementation from a library

▸ normally that library would have
a law testing module

DRIVETRIBE

COUNTING BUMPS - PUTTING IT TOGETHER

68

DRIVETRIBE

OTHER ALGEBRAS WE USE

69

▸ Adding events: Semigroup/Monoid

▸ Duplicate events: Band

▸ Out of order and duplicate events: Semilattice

FIN

