
High Performance Actors

Kiki, principal enterprise architect @ Lightbend

The enabler of these characteristics is a Message Driven Model.

Responsive Resilient Elastic

React to
Users

React to
Failures

React to
Load Variance

Low latency

Real-time / NRT

Graceful, Non-catastrophic
Recovery

Self-Healing

Responsive in the face of
changing loads

What we mean by “Reactive”

• Fast decisions
• Fast failures
• Fast progress with Concurrency &

Parallelism

Message Driven Benefits for
Speed and Performance

Actor BActor A

Make a local decision

state

message
handler

Ignore
This?

message

Actor BActor A

Make a local decision

state: 1

message
handler

Do This

+2

asynchronous

message

Actor BActor A

Make a local decision

state: 3

message
handler

Do This

message

+2

asynchronous

Local decision code

Actor BActor A

Change Behavior

state: 3

message
handler

OK
subtract

on

message

-1

message

Start
subtracting

Actor BActor A

Change Behavior

state: 2

message
handler

Did
that…

message

-1

Change
behavior
code

Change
behavior

code
(cont’d)

Actor BActor A

Send more messages

state: 2

message
handler

Tell “A” I
did that…

message

Send more messages code

Actor BActor A

Or chose not to

state: 3

message
handler

…Or not…
¯_(�)_/¯

“don’t care”

Trust but verify

Actor BActor A

Create More Actors

state: 3

message
handler

Actor B.1

Actor B.2

Actor B.3

Go forth!

Create more actors code
Java

Create Actors Liberally
Akka actors have a small memory
footprint; ~2.5 million actors per GB of
heap.

Akka Abstractions

Akka Streams Akka Cluster Akka Http

Scalability Cube: 3 dimensions of
scalability

Y-axis:
scale via
functional
compositi
on

x-axis: horizontal scaling via
duplication and load balancing

z-axis: split similar
things via data
partitioning/sharding

never block
always asynchronous

Non-blocking
Actor messaging, default mailbox, work
scheduling is non blocking.

Asynchronous
Actors are asynchronous by nature: an
actor can progress after a message
send without waiting for the actual
delivery to happen.

Dispatcher
• Selfless: Doesn’t hog resources
• Responsible for assigning threads
• Only assigns when necessary
• Idle actors do not use threads
• Dispatcher always paired up with an executor which

will define what kind of thread pool model is used
to support the actors

• CPU caches likely each time actors are assigned
threads and warmed caches are one of your best
friend for high performance.

Fork Join Executor - from 1.4
million to 20 million messages

per second

…and then from 20 million to 50
million messages per second

throughput vs fairness

• CAS compare and swap
• Atomic values, adders and accumulators

Even faster in actors

What kinds of machines, with how many
cores, will run this application? How CPU-
bound are the tasks being performed by
my actors? How many threads can I
realistically expect to run concurrently for
this application on those machines?

Mechanical Sympathy

Akka Streams
Implementation of Reactive Streams, concerned with applying
backpressure when producers are faster than consumers.

Artery is designed from the ground
up to support high-throughput in

the magnitude of 1 million
messages per second and low-
latency in the magnitude of 100

microseconds.

• 630,239 messages/s with message payload of 100 bytes
• 8,245 messages/s with messages payload of 10,000 bytes
• Round trip latency at a message rate of 10,000 messages/s:

– 50%ile: 155 µs,
– 90%ile: 173 µs
– 99%ile: 196 µs

Artery Aeron Performance

*two m4.4xlarge EC2 instances (1 Gbit/s bandwidth)

Aeron efficient, guaranteed
transport.

Designed to work with low-latency, high-
throughput systems.

Aeron “Busy Spinning”
Message offers or polls are retried until
successful.

Tuning: CPU Usage vs Latency
Values can be from 1 to 10, where 10 strongly prefers low latency
and 1 strongly prefers less CPU usage
akka.remote.artery.advanced.idle-cpu-level = 1

Aeron Interaction Pattern
The unidirectional nature of Aeron channels
fits nicely with the Akka peer-to-peer
communication model.

ByteBuffer Based Serialization

ByteBuffer Serializer Interface

Aeron Message Channels

User
Messages

Internal
Control

Messages

Control stream

All messages are not created
equally

User
Messages

Internal
Control

Messages

Optional:
Large

Messages

Actor Path Compression

Actor Path Compression

Message!

Receiver initiates
algorithm

Advertises
compression table

Remote sender
uses advertised

table

Compression Algorithm

Built-in Flight-Recorder

• Fixed size file
• This file is crash resistant
• Very low overhead

Flight Recorder

Akka Cluster

• Gossip Protocol
• Adaptive load balancing

Akka Cluster

Akka Cluster: Gossip
The cluster membership used in Akka is based
on Amazon’s Dynamo system and particularly
the approach taken in Basho’s’ Riak
distributed database.

Akka Cluster: Gossip
The cluster membership used in Akka is based
on Amazon’s Dynamo system and particularly
the approach taken in Basho’s’ Riak
distributed database.

Akka Cluster: Gossip Convergence
Information about the cluster converges locally at a
node at certain points in time.

Akka Cluster: Gossip Protocol
A variation of push-pull gossip is used to reduce the
amount of gossip information sent around the cluster.

Akka Cluster: Sharding
performance

Cluster Sharding can be scaled in a nearly linear
fashion. It can easily handle millions of Actors without
much regression in messaging speed or message loss.

20 cluster nodes and 10,000 clustered actors. First we
measured the latency given a message throughput of 100
pings per second, and then given a throughput of 500 pings
per second.

Akka Cluster: Adaptive Load
Balancing

The AdaptiveLoadBalancingPool / AdaptiveLoadBalancingGro
up performs load balancing of messages to cluster nodes
based on the cluster metrics data.

Akka Cluster: Adaptive Load
Balancing

http://blog.kamkor.me/Akka-Cluster-Load-Balancing/

A user’s story

"Powered by Akka and Scala, squbs has already provided very

high-scale results with a low infrastructure footprint:
our applications are able to serve over a billion hits a day with as

little as 8 VMs and 2 vCPU each."

PayPal

"Akka helps our systems stay responsive even at 90% CPU, very

uncharacteristic for our older architectures, and provides for
transaction densities never seen before. Batches or micro-batches

do their jobs in one-tenth of the time it took before. With wider

adoption, we will see this kind of technology being able to reduce

cost and allow for much better organizational growth without
growing the compute infrastructure accordingly."

PayPal

"Not only do we achieve much larger transaction rates with the

same hardware infrastructure, but we also often cut down code by
80% for the same functionality when compared to equivalent

imperative code."

PayPal

LinkedIn

Presence Platform display real-time presence status for a
member’s connections across LinkedIn messaging, feed,
notifications, etc. on both mobile and web for hundreds of
millions of LinkedIn members across the globe.

Is it really so Difficult?
Akka makes the difficult possible

How can I be confident?
• The Actor model is proven
• Akka is designed from ground up for

performance on the JVM
• Akka scales on all axis X, Y, Z
• Other companies have benefited from Akka
• You can confidently focus on your core

competencies while using Akka.

• Akka.io / akka guides
• Talk to users, gitter chat
• Tweet the akka team: @akkateam
• For fun tweet me: @kikisworldrace

Getting started with Akka

