
How Events
Are Reshaping
Modern Systems

Jonas Bonér
@jboner

1. Events drive autonomy
2. Events help reduce risk
3. Events help you move faster
4. Events Increase Loose coupling
5. Events increase stability
6. Events increase scalability
7. Events increase resilience
8. Events increase traceability
9. Events allow for time-travel

Why Should you care about Events?

Why Now?
1. Cloud and multicore architectures
2. Microservices and distributed systems
3. Data-centric applications
4. “We want more, of everything, and we
want it now.” -Your Customers

What is an

Event?

✴ Events represent Facts of information
➡ Facts are immutable

➡ Facts Accrue - Knowledge can only grow
✴ Events/Facts can be disregarded/Ignored
✴ Events/Facts Can not be retracted (once accepted)
✴ Events/Facts Can not be deleted (once accepted)

➡ Might be needed for legal or moral reasons
✴ Events/Facts (new) can invalidate existing Facts

The Nature of Events

1. REceive and react (or not) to facts, that
are coming its way

2. Publish new facts (immutable events) to
the rest of the world

3. Invert the control flow to minimize
coupling and increase autonomy

Event Driven

Services

Mutable State
Needs To Be
Contained
And Non Observable

Publish Facts
To Outside World

Event Driven

Services

Eventual
Consistency

Command

Event

Event Event
Event Stream

Event
Stream

Use The

as the communication fabric

Event
Stream

Use The

as the integration fabric

Event
Stream

Use The

as the replication fabric

Event
Stream

Use The

as the consensus fabric

Event
Stream

Use The

as the Persistence fabric

Eventual
Consistency

We have to rely on

But relax—it’s how the world works

Information
Has Latency

Information Is Always

From the Past

Welcome To The Wild Ocean Of

Non Determinism
Distributed Systems

“In a system which cannot count on
distributed transactions, the management
of uncertainty must be implemented in the

business logic.”
- Pat Helland

Life Beyond Distributed Transactions, Pat Helland (2007)

We Need To Model

Uncertainty

Events Can Lead To Greater

Certainty

“An autonomus component can only
promise its own behavior.”

“Autonomy makes information local,
leading to greater certainty and stability.”

- Mark Burgess

In Search of Certainty, Thinking in Promises - Mark Burgess

Events Can Help Us Craft
Autonomous Islands
Of Determinism

“Accidents come from relationships
not broken parts.”

- Sidney dekker

Drift into Failure - Sidney Dekker

“Complex systems run as broken systems.”
- richard Cook

How Complex Systems Fail - Richard Cook

Resilience
is by

Design

Photo courtesy of FEMA/Joselyne Augustino

Events Can Help Us

Manage

Failure
Instead Of Trying To Avoid It

Requirements for a
Sane Failure Model

1. Contained—Avoid cascading failures
2. Reified—as Events
3. Signalled—Asynchronously
4. Observed—by 1-N
5. Managed—Outside failed Context

Failures need to be

✴Async?
✴Distributed systems?
✴Eventual consistency?
✴Uncertainty?
✴Failure models?

But All This Stuff

Is Hard

Think
In Terms Of

Workflow

Events First
Domain Driven

Design

“When you start modeling events, it
forces you to think about the behaviour
of the system. As opposed to thinking

about the structure of the system.”
- Greg Young

A Decade of DDD, CQRS, Event Sourcing, Greg Young (Presentation from 2016)

✴ Don’t focus on the things
 The Nouns
 The Domain Objects

✴ Focus on what happens
 The Verbs
 The Events

Mine the

Facts

 Event Storming

✴ IntentS
➡ Communication
➡ Conversations
➡ Expectations
➡ Contracts
➡ Control Transfer

Event Driven Design

✴ Facts
➡ State
➡ History
➡ Causality
➡ Notifications
➡ State Transfer

 Commands Events

✴Commands
➡ Object form of method/Action request
➡ Imperative: CreateOrder, ShipProduct

✴Reactions
➡ Represents side-effects

✴Events
➡ Represents something that has happened
➡ Past-tense: OrderCreated, ProductShipped

Event Driven Design

Commands Eventsvs
1. All about intent
2. Directed
3. Single addressable
destination

4. Models personal
communication

5. Distributed focus
6. Command & Control

1. Intentless
2. Anonymous

3. Just happens - for
others (0-N) to observe

4. Models broadcast
(speakers corner)

5. Local focus
6. Autonomy

Let the Events Define the

Bounded Context

Inside Data
 Our current present—state
Outside Data
 Blast from the past—Events/facts
Between Services
 Hope for the future—commands

Data on the inside vs Data on the outside - Pat Helland

Event Based
Persistence

✴ Maintains Integrity & consistency

✴ Is our Unit of Consistency

✴ Is our Unit of Failure

✴ Is our Unit of Determinism

✴ Is fully Autonomous

The Aggregate

CRUD is DEAD

“Update-in-place strikes systems
designers as a cardinal sin: it violates

traditional accounting practices that have
been observed for hundreds of years.”

- jim Gray

The Transaction Concept, Jim Gray (1981)

Event Logging
The Bedrock

“The truth is the log.
The database is a cache
of a subset of the log.”

- Pat Helland

Immutability Changes Everything, Pat Helland (2015)

Event Sourcing
A Cure For the Cardinal Sin

SAD Path - recover from failure

Happy Path

Event
Sourced
Services

5) Run side-effects
(approve the payment)

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

1) Rehydrate Events
from Event Log

2) Update internal
component state

Memory Image

Event Sourcing

✴ One single Source of Truth with All history
✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch
✴ Allows others to Subscribe to state changes
✴ Has good Mechanical sympathy (Single Writer
Principle etc.)

✴ Unfamiliar model
✴ Versioning of events

✴ Deletion of events (legal or moral reasons)

Disadvantages
Of Using Event Sourcing

Events
Allow Us To Manage

Time

“Modelling events forces you to have a temporal
focus on what’s going on in the system.

Time becomes a crucial factor of the system.”
- Greg Young

A Decade of DDD, CQRS, Event Sourcing, Greg Young (Presentation from 2016)

✴ Event is a snapshot in time
✴ Event ID is an index for time
✴ Event Log is our full history

 The database of Our past

 The path to Our present

Event Sourcing
Allows Us To

Model Time

Event Sourcing
Allows For

Time Travel

✴Replay the log for historic debugging
✴Replay the log for auditing & traceability
✴Replay the log on failure

✴Replay the log for replication

We Can Even Fork the Past

...Or Join Two Distinct Pasts

Key Takeaways
Events-First design helps you to:
✴ Move Faster towards a Resilient architecture
✴ Design autonomous services
✴ Balance Certainty and Uncertainty
✴ reduce risk when modernizing applications
Event Logging allows you to:
✴ AVOID CRUD and ORM
✴ take control of your system’s history
✴ time-travel

✴ Balance Strong and eventual consistency

http://akka.io

http://akka.io

Learn More
Download my latest book for free at:
bit.ly/reactive-microsystems

http://bit.ly/reactive-microsystems

