
Applied
Performance Theory

@kavya719

kavya

applying
performance theory

to practice

performance

capacity

• What’s the additional load the system can support,  
without degrading response time?

• What’re the system utilization bottlenecks?

• What’s the impact of a change on response time, 
maximum throughput?

• How many additional servers to support 10x load?

• Is the system over-provisioned?

#YOLO method 

load simulation  
Stressing the system to empirically determine actual  
performance characteristics, bottlenecks. 
Can be incredibly powerful.

performance modeling

performance modeling

real-world system theoretical model

results
analyze

translate back

model as*

* makes assumptions about the system:
 request arrival rate, service order, times.
 cannot apply the results if your system does not satisfy them!

a cluster of many servers
 the USL

scaling bottlenecks

a single server
open, closed queueing systems 

utilization law, Little’s law, the P-K formula
CoDel, adaptive LIFO

stepping back
the role of performance modeling

a single server

model I

clients web
server

“how can we improve the mean response time?”

“what’s the maximum throughput of this server,
 given a response time target?”

re
sp

on
se

 ti
m

e
(m

s)

throughput (requests / second)

response time threshold

model the web server as a queueing system.

web server

request response

queueing delay + service time = response time

} }

model the web server as a queueing system.

assumptions

1. requests are independent and random, arrive at some “arrival rate”.
2. requests are processed one at a time, in FIFO order; 

requests queue if server is busy (“queueing delay”).
3. “service time” of a request is constant.

web server

request response

queueing delay + service time = response time

} }

model the web server as a queueing system.

assumptions

1. requests are independent and random, arrive at some “arrival rate”.
2. requests are processed one at a time, in FIFO order; 

requests queue if server is busy (“queueing delay”).
3. “service time” of a request is constant.

web server

request response

queueing delay + service time = response time

} }

model the web server as a queueing system.

assumptions

1. requests are independent and random, arrive at some “arrival rate”.
2. requests are processed one at a time, in FIFO order; 

requests queue if server is busy (“queueing delay”).
3. “service time” of a request is constant.

web server

request response

queueing delay + service time = response time

} }

“What’s the maximum throughput of this server?”
i.e. given a response time target

“What’s the maximum throughput of this server?”
i.e. given a response time target

arrival rate increases

server utilization increases

utilization = arrival rate * service time

“busyness”

ut
ili

za
tio

n

arrival rate

Utilization law

“What’s the maximum throughput of this server?”
i.e. given a response time target

arrival rate increases

server utilization increases linearly

Utilization law

“What’s the maximum throughput of this server?”
i.e. given a response time target

P(request has to queue) increases, so 
mean queue length increases, so
mean queueing delay increases.

arrival rate increases

server utilization increases linearly

Utilization law

“What’s the maximum throughput of this server?”
i.e. given a response time target

P(request has to queue) increases, so 
mean queue length increases, so
mean queueing delay increases.

arrival rate increases

server utilization increases linearly

Utilization law

P-K formula

Pollaczek-Khinchine (P-K) formula

mean queueing delay = U * linear fn (mean service time) * quadratic fn (service time variability)
(1 - U)

assuming constant service time and so, request sizes:

mean queueing delay ∝ U
(1 - U)

utilization (U)

re
sp

on
se

 ti
m

esince response time ∝
queueing delay

utilization (U)

qu
eu

ei
ng

 d
el

ay

“What’s the maximum throughput of this server?”
i.e. given a response time target

arrival rate increases

server utilization increases linearly

Utilization law

P-K formula

mean queueing delay increases non-linearly;
so, response time too.

re
sp

on
se

 ti
m

e
(m

s)

throughput (requests / second)

low utilization
regime

“What’s the maximum throughput of this server?”
i.e. given a response time target

arrival rate increases

server utilization increases linearly

Utilization law

P-K formula

mean queueing delay increases non-linearly;
so, response time too.

re
sp

on
se

 ti
m

e
(m

s)

throughput (requests / second)

max throughput

low utilization
regime

high utilization
regime

“How can we improve the mean response time?”

“How can we improve the mean response time?”

1. response time ∝ queueing delay

prevent requests from queuing too long

• Controlled Delay (CoDel) 
in Facebook’s Thrift framework 

• adaptive or always LIFO 
in Facebook’s PHP runtime,  
Dropbox’s Bandaid reverse proxy.

• set a max queue length

• client-side concurrency control

“How can we improve the mean response time?”

onNewRequest(req, queue):
 if (queue.lastEmptyTime() < (now - N ms)) {
 // Queue was last empty more than N ms ago;
 // set timeout to M << N ms. 
 timeout = M ms 
 } else {
 // Else, set timeout to N ms. 
 timeout = N ms 
 }  
 queue.enqueue(req, timeout)

1. response time ∝ queueing delay

prevent requests from queuing too long

• Controlled Delay (CoDel) 
in Facebook’s Thrift framework 

• adaptive or always LIFO 
in Facebook’s PHP runtime,  
Dropbox’s Bandaid reverse proxy.

• set a max queue length

• client-side concurrency control

key insight: queues are typically empty
allows short bursts, prevents standing queues

“How can we improve the mean response time?”

1. response time ∝ queueing delay

prevent requests from queuing too long

• Controlled Delay (CoDel) 
in Facebook’s Thrift framework 

• adaptive or always LIFO 
in Facebook’s PHP runtime,  
Dropbox’s Bandaid reverse proxy.

• set a max queue length

• client-side concurrency control

newest requests first, not old requests  
that are likely to expire.

helps when system is overloaded,  
makes no difference when it’s not.

key insight: queues are typically empty
allows short bursts, prevents standing queues

“How can we improve the mean response time?”

2. response time ∝ queueing delay

 U * linear fn (mean service time) * quadratic fn (service time variability)
(1 - U)

P-K formula

decrease request / service size variability
for example, by batching requests

}
decrease service time
by optimizing application code

}

the cloudindustry site

N sensors

server

while true:
 // upload synchronously.
 ack = upload(data)
 // update state,
 // sleep for Z seconds.
 deleteUploaded(ack)
 sleep(Z seconds)

processes data from
N sensors

model II

• requests are synchronized.

• fixed number of clients.

throughput depends on response time! 

queue length is bounded (<= N),
so response time bounded!

}
This is called a closed system.
super different that the previous web server model (open system).

server

N clients

]]
responserequest

response time vs. load for closed systems

assumptions

1. sleep time (“think time”) is constant.
2. requests are processed one at a time, in FIFO order.
3. service time is constant.

What happens to response time in this regime?

Like earlier, as the number of clients (N) increases:
throughput increases to a point i.e. until utilization is high.  
after that, increasing N only increases queuing. th

ro
ug

hp
ut

number of clients

low utilization
regime

high utilization
regime

Little’s Law for closed systems

server

sleeping

waiting being processed

]]

the total number of requests in the system includes requests across the states.

a request can be in one of three states in the system:
sleeping (on the device), waiting (in the server queue), being processed (in the server).

the system in this case is the entire loop i.e.

N clients

Little’s Law for closed systems

requests in system = throughput * round-trip time of a request across the whole system

sleep time + response time

server

sleep time

queueing delay + service time = response time

]]

So, response time only grows linearly with N!

N = constant * response time

applying it in the high utilization regime (constant throughput) and assuming constant sleep:

N clients

response time vs. load for closed systems

So, response time for a closed system:

number of clients

re
sp

on
se

 ti
m

e
Like earlier, as the number of clients (N) increases:
throughput increases to a point i.e. until utilization is high.  
after that, increasing N only increases queuing. high utilization regime: 

grows linearly with N.

low utilization regime:
response time stays ~same

high utilization regime

response time vs. load for closed systems

So, response time for a closed system:

number of clients

re
sp

on
se

 ti
m

e
Like earlier, as the number of clients (N) increases:
throughput increases to a point i.e. until utilization is high.  
after that, increasing N only increases queuing.

arrival rate

re
sp

on
se

 ti
m

e

way different than for an open system:

high utilization regime: 
grows linearly with N.

low utilization regime:
response time stays ~same

high utilization regime high utilization regime

open v/s closed systems

• how throughput relates to response time.
• response time versus load, especially in the high load regime.

closed systems are very different from open systems:

uh oh…

standard load simulators typically mimic closed systems

A couple neat papers on the topic, workarounds:
Open Versus Closed: A Cautionary Tale
How to Emulate Web Traffic Using Standard Load Testing Tools

So, load simulation might predict:
• lower response times than the actual system yields,
• better tolerance to request size variability,
• other differences you probably don’t want to find out in production…

open v/s closed systems

…but the system with real users may not be one!

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1872&context=compsci
http://How%20to%20Emulate%20Web%20Traffic%20Using%20Standard%20Load%20Testing%20Tools

a cluster of servers

clients

cluster of
web servers

load
balancer

“How many servers do we need to support a target throughput?”
 while keeping response time the same

capacity
planning!

“How can we improve how the system scales?” scalability

max throughput of a cluster of N servers = max single server throughput * N ?

“How many servers do we need to support a target throughput?”
 while keeping response time the same

no, systems don’t scale linearly.

• contention penalty 
due to serialization for shared resources. 
examples: database contention, lock
contention. 

• crosstalk penalty 
due to coordination for coherence.

 examples: servers coordinating to synchronize 
 mutable state.

αN

max throughput of a cluster of N servers = max single server throughput * N ?

“How many servers do we need to support a target throughput?”
 while keeping response time the same

no, systems don’t scale linearly.

• contention penalty 
due to serialization for shared resources. 
examples: database contention, lock
contention. 

• crosstalk penalty 
due to coordination for coherence.

 examples: servers coordinating to synchronize 
 mutable state.

αN

βN2

Universal Scalability Law (USL)

throughput of N servers = N
 (αN + βN2 + C)

 N
(αN + βN2 + C)

N
C

N
(αN + C)

contention and crosstalk

linear scaling

contention

• smarter data partitioning, smaller partitions
 in Facebook’s TAO cache

“How can we improve how the system scales?”

Avoid contention (serialization) and crosstalk (synchronization).

• smarter aggregation
 in Facebook’s SCUBA data store

• better load balancing strategies: best of two random choices
• fine-grained locking
• MVCC databases
• etc.

stepping back

modeling requires assumptions that may be difficult to practically validate.
but, gives us a rigorous framework to:

• determine what experiments to run 
run experiments needed to get data to fit the USL curve, response time graphs.

• interpret and evaluate the results 
load simulations predicted better results than your system shows

• decide what improvements give the biggest wins 
improve mean service time, reduce service time variability, remove crosstalk etc.

the role of performance modeling
most useful in conjunction with empirical analysis.

load simulation, experiments

modeling requires assumptions that may be difficult to practically validate.
but, gives us a rigorous framework to:

• determine what experiments to run 
run experiments needed to get data to fit the USL curve, response time graphs.

• interpret and evaluate the results 
load simulations predicted better results than your system shows

• decide what improvements give the biggest wins 
improve mean service time, reduce service time variability, remove crosstalk etc.

the role of performance modeling
most useful in conjunction with empirical analysis.

load simulation, experiments

load simulation results with increasing number of virtual clients (N) = 1, …, 100

… load simulator hit a bottleneck.

re
sp

on
se

 ti
m

e

number of clients

wrong shape
for response time curve!

should be
one of the two curves above

number of clients

re
sp

on
se

 ti
m

e

modeling requires assumptions that may be difficult to practically validate.
but, gives us a rigorous framework to:

• determine what experiments to run 
run experiments needed to get data to fit the USL curve, response time graphs.

• interpret and evaluate the results 
load simulations predicted better results than your system shows

• decide what improvements give the biggest wins 
improve mean service time, reduce service time variability, remove crosstalk etc.

the role of performance modeling
most useful in conjunction with empirical analysis.

load simulation, experiments

@kavya719
speakerdeck.com/kavya719/applied-performance-theory

Special thanks to Eben Freeman for reading drafts of this

References
 
Performance Modeling and Design of Computer Systems, Mor Harchol-Balter
Practical Scalability Analysis with the Universal Scalability Law, Baron Schwartz
Open Versus Closed: A Cautionary Tale
How to Emulate Web Traffic Using Standard Load Testing Tools

Queuing Theory, In Practice

Fail at Scale
Kraken: Leveraging Live Traffic Tests

SCUBA: Diving into Data at Facebook

http://speakerdeck.com/kavya719/applied-performance-theory
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1872&context=compsci
http://How%20to%20Emulate%20Web%20Traffic%20Using%20Standard%20Load%20Testing%20Tools
https://speakerdeck.com/emfree/queueing-theory
https://queue.acm.org/detail.cfm?id=2839461
https://research.fb.com/publications/kraken-leveraging-live-traffic-tests-to-identify-and-resolve-resource-utilization-bottlenecks-in-large-scale-web-services/
https://research.fb.com/publications/scuba-diving-into-data-at-facebook/

On CoDel at Facebook:
“An attractive property of this algorithm is that the values of M and N tend not to need tuning.
Other methods of solving the problem of standing queues, such as setting a limit on the number of items in
the queue or setting a timeout for the queue, have required tuning on a per-service basis.
We have found that a value of 5 milliseconds for M and 100 ms for N tends to work well across a wide set of
use cases. “

Using LIFO to select thread to run next, to reduce mutex, cache trashing and context switching overhead:

number of virtual clients (N) = 1, …, 100

response time

concurrency (N)

wrong shape
for response time curve!

should be

concurrency (N)

response time

… load simulator hit a bottleneck!

utilization = throughput * service time (Utilization Law)

throughput

“busyness”

queueing delay increases  
(non-linearly);
so, response time.

throughput increases

utilization increases

Facebook sets target cluster capacity = 93% of theoretical.

…is this good or is there a bottleneck?

cluster capacity is ~90% of theoretical,
so there’s a bottleneck to fix!

Facebook sets target cluster capacity = 93% of theoretical.

throughput

latency

non-linear responses to load

throughput

concurrency

non-linear scaling

microservices:
systems are complex

continuous deploys: 
systems are in flux

load generation

need a representative workload.

…use live traffic.

traffic shifting

profile (read, write requests)
arrival pattern including traffic bursts

capture and replay

edge weight cluster weight server weight

adjust weights that control load balancing,
to increase the fraction of traffic to a cluster, region, server.

traffic shifting

