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Motivation

• Two major vulnerabilities in processors have been disclosed

• Affecting every CPU vendor and, thus, billions of devices

• Discovered in 2017 by 4 independent teams

• News coverage followed by a lot of panic

• What is this all about and what are the consequences?
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Performance optimizations

• Modern computers are amazingly fast

• Get faster and faster every year

• Smaller and smaller

• Include many clever optimizations to maximize performance

• What are the downsides?
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Side-channel attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware
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Side-channel attacks

• Exploit unintentional information leakage by side-effects

• Power consumption

• Execution time

• CPU cache

• . . .

• Performance optimizations often induce side-channel

leakage
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Software-based side-channel attacks

• Do not require physical access

• Mounted solely by software

• native code

• within the browser
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Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the instruction
set

• Vary in performance, size, costs, . . .

• Intel (Pentium, Sandy Bridge, Skylake, . . . )

• AMD (Athlon, Bobcat, Zen, . . . )
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Microarchitectural Side-channel attacks

• Side-channel attacks on the implementation of an ISA

• Expose internal state of the hardware

• depending on secret data

• to infer the secret data
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Caches and Cache Attacks



CPU Cache

printf("%d", i);

printf("%d", i);
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Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access
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Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise
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Memory Access Latency
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Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Break (K)ASLR

• Allow Rowhammer attack in software

• Build covert communication channels
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Cache Attack Demo



Operating Systems 101



Core of Meltdown and Spectre

• Kernel is isolated from user

space

• This isolation is a combination

of hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface called system calls

Userspace Kernelspace

Applications
Operating
System Memory
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Core of Meltdown and Spectre

• Breaks isolation between

applications and kernel

• User applications can access

kernel addresses

• Entire physical memory is

mapped in the kernel
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Out-of-order execution and

Meltdown







Wait for an hour



Wait for an hour

LATENCY





Parallelize
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Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width, height, area);
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Out-of-order execution
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• Instructions are fetched and decoded in the front-end

• Instructions are dispatched to the backend

• Instructions are processed by individual execution units
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• Instructions are executed out-of-order

• Instructions wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• Instructions retire in-order

• State becomes architecturally visible
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Reading memory

• If an application reads memory, . . .

• . . . permissions are checked

• . . . data is loaded

• If an application tries to read inaccessible memory, . . .

• . . . an error occurs

• . . . application is stopped

• But what does the CPU really do?
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Let’s try to read kernel memory



Building the Code

• Find something human readable, e.g., the Linux version

# sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner

21 Moritz Lipp — IAIK, Graz University of Technology



Building the Code

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);
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Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535

sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault
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Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea
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Building the Code

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of

order?

• Problem: out-of-order instructions are not visible
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Building the Code

• Adapted code

*(volatile char*) 0;

array[0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused-

value]

*(char*) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

*(volatile char*)0;
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Traces in the Cache
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Traces in the Cache
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Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions
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Building the Code

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached
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Building the Code

• Flush+Reload over all pages of the array
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• Index of cache hit reveals data

• Permission check is in some cases not fast enough
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Building Meltdown

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel

address space
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Spying on passwords



Dumping memory



Can we fix that?



Take the kernel addresses...

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel addresses...
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...and remove them

• ...and remove them if not needed?

• User accessible check in hardware is not

reliable
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Idea

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all
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Userspace Kernelspace

Applications
Operating
System Memory
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Kernel Address Space Isolation

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI

(Kernel Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double

Map”

• All share the same idea: switching address spaces on context

switch
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Performance

• Depends on how often you need to switch between kernel and user

space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%
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Speculative Execution and Spectre
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»A table for 6 please«
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Speculative Execution

• CPU tries to predict the future (branch predictor), . . .

• . . . based on events learned in the past

• Speculative execution of instructions

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

• Measurable side-effects?
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Spectre (Variant 1: Bounds-check bypass)

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction
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Spectre (Variant 1: Bounds-check bypass)
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Spectre (Variant 1: Bounds-check bypass)
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Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()
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Spectre (Variant 2: Branch target injection)
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Spectre

• We can influence the CPU to mispredict the future

• CPU speculatively executes code that should never be executed

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler

extensions
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Can we fix that?



Spectre Mitigations

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: Massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU
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Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology



Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology



Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology



Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology



Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology



Spectre Variant 1 Mitigations

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer:

builtin load no speculate
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Spectre Variant 1 Mitigations
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Spectre Variant 1 Mitigations

• Speculation barrier works if affected code

constructs are known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

• Non-negligible performance overhead of barriers
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Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads
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Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that
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Spectre Variant 2 Mitigations (Software)

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)
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What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology



What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology



What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology



What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology



What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology



What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology



What to do now?



Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance
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When you read the manuals...

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications
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A unique chance

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance
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Conclusion



Conclusion

• Underestimated microarchitectural attacks for a long time

• Meltdown and Spectre exploit performance optimizations

• Allow to leak arbitrary memory

• Countermeasures come with a performance impact

• Find trade-offs between security and performance
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