
NODE.JS APPLICATIONS
BUILDING SCALABLE AND DEPENDABLE JAMUND FERGUSON

The Mystery of the
Missing Stack Trace🕵

THE MYSTERY OF THE MISSING STACK TRACE

Error: Can't set headers after they are sent.
 at ServerResponse.OutgoingMessage.setHeader (_http_outgoing.js:356:11)
 at ServerResponse.header (/web/mynodeapp/node_modules/express/lib/response.js:767:10)
 at ServerResponse.send (/web/mynodeapp/node_modules/express/lib/response.js:170:12)
 at ServerResponse.res.send (/web/mynodeapp/node_modules/pplogger/index.js:225:18)
 at done (/web/mynodeapp/node_modules/express/lib/response.js:1004:10)
 at Stub.callback (/web/mynodeapp/node_modules/adaro/lib/engine.js:137:22)
 at Stub.flush (/web/mynodeapp/pp/node_modules/dustjs-linkedin/lib/dust.js:513:10)
 at Chunk.end (/web/mynodeapp/node_modules/dustjs-linkedin/lib/dust.js:612:15)
 at /web/mynodeapp/node_modules/adaro/lib/patch/index.js:89:53
 at /web/mynodeapp/node_modules/adaro/lib/reader/js.js:39:13
 at /web/mynodeapp/node_modules/engine-munger/lib/munger.js:85:13
 at /web/mynodeapp/node_modules/engine-munger/lib/cache.js:65:13
 at /web/mynodeapp/node_modules/graceful-fs/graceful-fs.js:78:16
 at /web/mynodeapp/node_modules/async-listener/glue.js:188:31
 at FSReqWrap.readFileAfterClose [as oncomplete] (fs.js:380:3)

😢

We had no idea why or where our apps
were failing

WHAT CAN WE DO?

▸ Compare a diff between last known working code

▸ Look through other logs for more information (nginx logs, access logs, etc)

▸ Look at system metrics (is there a memory leak or CPU spike?)

▸ Add console.log statements somewhere???

▸ Advanced debugging techniques (post-mortem debugging, heapdumps, etc.)

THE MYSTERY OF THE MISSING STACK TRACE

DECRYPT RETURNS A PROMISE

ADDUSER EXPECTS A STRING

LOG EXPECTS A SMALL OBJECT OR A STRING

💣

THE MYSTERY OF THE MISSING STACK TRACE

LESSONS LEARNED

▸ We need better static analysis

▸ We need better debugging tools

▸ We need a consistent way to handle errors

▸ We need to better understand our logging & monitoring💣

FLOWTYPE & ESLINT
STATIC ANALYSIS WITH

TYPE CHECKING COULD HAVE CAUGHT
THAT BUG WITH 2-LINES OF CODE

STATIC ANALYSIS

STATIC ANALYSIS

PREVENTING BUGS WITH TYPES

STATIC ANALYSIS

PREVENTING BUGS WITH TYPES

STATIC ANALYSIS

FLOW WON’T LET THAT SLIDE

STATIC ANALYSIS

WHY ADD TYPES TO YOUR JS?

▸ Prevents large % of bugs

▸ Helps surface architectural problems

▸ Both Flow and TypeScript are well maintained, high quality tools

▸ Both syntaxes are light-weight and easy to use

▸ Both allow for gradual adoption

🙋 🍩🚫

Type systems have a lot in common with linters

Each JS File Parser (Acorn) Abstract Syntax Tree (AST) Rules

Warning

Success

Errors

Architecture of JavaScript Linter (ESLint)

Linters can only think about one file at a time

All Your JS FilesFlow Types & Relationships Graph

Architecture of JavaScript Type System (Flow)

Single JS File

Warning

Success

Errors

Flow

Graph

COULD A LINTER HAVE HELPED
US WITH OUR MYSTERY BUG?

STATIC ANALYSIS

STATIC ANALYSIS

STATIC ANALYSIS

STATIC ANALYZERS AND FORMATTERS ARE PRETTY COOL

FlowType ESLint Prettier

Unfortunately, we still get bugs from time to time

INSPECTOR MODULE
DEBUGGING USING THE

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

SETTING UP A DEBUG MODE

TURN IT ON

TURN IT OFF

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

Set Breakpoint

THE BUILT-IN INSPECTOR MODULE

PAUSE ON UNCAUGHT EXCEPTIONS

THE BUILT-IN INSPECTOR MODULE

PAUSE ON CAUGHT EXCEPTIONS

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

Don’t try this in production
 

STOP

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

THE BUILT-IN INSPECTOR MODULE

https://chromedevtools.github.io/devtools-protocol/

https://chromedevtools.github.io/devtools-protocol/

THE BUILT-IN INSPECTOR MODULE

Default Node Error

Inspector Based Error

DEBUGGING NODE.JS APPS

FIND A DEBUGGING APPROACH THAT
WORKS FOR YOU AND YOUR TEAM

ASYNC/AWAIT
ERROR HANDLING USING

ERROR HANDLING WITH ASYNC/AWAIT

Errors thrown inside async
functions get converted into
rejected Promises 💡

ERROR HANDLING WITH ASYNC/AWAIT

Async Middleware Pattern

ERROR HANDLING WITH ASYNC/AWAIT

T H I S I S P R E T T Y N I C E

ERROR HANDLING WITH ASYNC/AWAIT

B U T W E D O N ’ T A C T U A L LY C AT C H I T 💣

E R R O R S W I L L B U B B L E U P

ERROR HANDLING WITH ASYNC/AWAIT

💥

ERROR HANDLING WITH ASYNC/AWAIT

PASS IN YOUR ASYNC MIDDLEWARE
RETURN A STANDARD MIDDLEWARE FUNCTION

CATCH ANY ERRORS

PASS THOSE TO THE EXPRESS ERROR HANDLER

EXECUTE THE ASYNC MIDDLEWARE

APPLY AS NEEDED

ERROR HANDLING WITH ASYNC/AWAIT

💥

Make it easy for your engineers 
to do the right thing

ERROR HANDLING WITH ASYNC/AWAIT

Custom Error Classes

CUSTOM ERRORS

CUSTOM ERRORS

CUSTOM ERRORS

1.

2.

3.

CUSTOM ERRORS

CUSTOM ERRORS

CUSTOM ERRORS

CUSTOM ERRORS

SUMMARY

▸ Don’t use object literals or strings for errors (missing stack trace)

▸ Use the Error built-in object

▸ Subclass Error to add statusCodes or to convert error codes into user-
friendly error messages for localization, etc

▸ We basically have one error class per micro-service to handle parsing the
errors out of the response….

The Mystery of the
Client-Side Errors)

THE MYSTERY OF THE CLIENT-SIDE ERRORS

CLIENT-SIDE MONITORING
BUTTON DOESN’T WORK

REAL ISSUE USUALLY IN DEV TOOLS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

CLIENT-SIDE MONITORING

window.onerror = function (msg, url, line, col, error) {  
 // 1. clean up the data  
 // 2. log to server w/AJAX or sendBeacon() API 
}

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE NOTICED A SPIKE DURING DEPLOY

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE CONGRATULATED OURSELVES…THEN ACTUALLY LOOKED INTO THE BUG

🏆 😮

THE MYSTERY OF THE CLIENT-SIDE ERRORS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE HAVE A LOT OF SERVERS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE HAVE A LOT OF SERVERS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE HAVE A LOT OF SERVERS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE HAVE A LOT OF SERVERS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

WE HAVE A LOT OF SERVERS

THE MYSTERY OF THE CLIENT-SIDE ERRORS

UI Code
Server code

A
B

THE MYSTERY OF THE CLIENT-SIDE ERRORS

ROLLING BACK MADE THINGS WORSE

THE MYSTERY OF THE CLIENT-SIDE ERRORS

LESSONS LEARNED

▸ UI is a huge monitoring blind-spot

▸ Be aware of how the deploy process affects users

▸ Try to make your code changes backwards compatible

▸ Consider separating UI and server deploys

BUILDING SCALABLE AND DEPENDABLE NODE.JS APPLICATIONS

▸Use static analysis (including types) to catch bugs early

▸Have a plan for debugging apps in production

▸Adopt a consistent approach to error handling

▸Know how to access all of your logs

▸Don’t forget to monitor client-side errors

THE END

