UBER

Scaling Uber's Elasticsearch as an Geo-Temporal Database

Danny Yuan @ Uber

Use Cases for a Geo-Temporal Database

2017 NEW YEARS EVE

Real-time Decisions on Global Scale

8:47 PM (UTC)

Dynamic Pricing: Every Hexagon, Every Minute

Dynamic Pricing: Every Hexagon, Every Minute

Metrics: how many UberXs were in a trip in the past 10 minutes

SAN FRANCISCO						
ITY: an Francisco Bay Area	PRODUCT:		DAT	E FROM:		
an na ana ao ao y maa	OUA					
PICK METRICS		SELECTION RAD	1U5 2	3 4	5	Б
 Driver Driving Client (trips) 						
Load Vestman						
Pre request ETA (min)						
Load Heatmap						
Post request ETA (min)						
Load Heatmap						
 Eyeballs count (views) 						
Load Heatmap						
 Completed trips (trips) 						
					\sim	
Load Heatmap						
 Requested trips (trips) 						
					\sim	
Load Heatmap					~	
Average time from request to disp.	atch (sec)					
Load Heatman						
Driver Pickup Time (min)						
		\sim	\frown			
Load Heatmap						
Univer Enroute Time (min)						
		\sim	-			

Metrics: how many UberXs were in a trip in the past 10 minutes

SAN FRANCISCO					
city: San Francisco Bay Area 🚽	PRODUCT: UberX	÷	DATE FROM:		
PICK METRICS		SELECTION RADIUS	3	4 5	Б
\sim Driver Driving Client (trips)					
Load Heatmap					
 Pre request ETA (min) 					
Load Heatmap					
 Post request ETA (min) 					
		~			
Load Heatman					
Evaluties and Alleria					
 Eyebalis count (views) 					
Lond Masteria					
Load Heatmap					
 Completed trips (trips) 					
	\frown			\sim	
				~	
Load Heatmap					
 Requested trips (trips) 					
	\frown			\sim	
Load Heatmap					
\sim Average time from request to dispatch (se	ec)				
		-			
		\sim			
Load Heatmap					
 Driver Pickup Time (min) 					
		\land			
Load Heatmap					
 Driver Enroute Time (min) 					
		<u> </u>			
		\sim			

Market Analysis: Travel Times

Forecasting: Granular Forecasting of Rider Demand

How Can We Produce Geo-Temporal Data for Ever Changing Business Needs?

Key Question: What Is the Right Abstraction?

Abstraction: Single-Table OLAP on Geo-Temporal Data

Abstraction: Single-Table OLAP on Geo-Temporal Data

<agg functions>, <dimensions> SELECT <data source> FROM WHERE <boolean filter> **GROUP BY <dimensions>** HAVING <boolean filter> ORDER BY <sorting criterial> LIMIT $\langle n \rangle$

Abstraction: Single-Table OLAP on Geo-Temporal Data <agg functions>, <dimensions> SELECT <data source> FROM WHERE <boolean filter> GROUP BY <dimensions> HAVING <boolean filter> ORDER BY <sorting criterial> LIMIT $\langle n \rangle$

Why Elasticsearch?

- Arbitrary boolean query
- Sub-second response time
- Built-in distributed aggregation functions
- High-cardinality queries
- Idempotent insertion to deduplicate data
- Second-level data freshness
- Scales with data volume
- Operable by small team

e gation functions

deduplicate data ess

Current Scale: An Important Context

- Ingestion: 850K to 1.3M messages/second
- Ingestion volume: 12TB / day
- Doc scans: 100M to 4B docs/ second
- Data size: 1 PB
- Cluster size: 700 ElasticSearch Machines - Ingestion pipeline: 100+ Data Pipeline Jobs

Our Story of Scaling Elasticsearch

Driving Principles

- Optimize for fast iteration
- Optimize for simple operations
- Optimize for automation and tools
- Optimize for being reasonably fast

The Past: We Started Small

Constraints for Being Small

- Three-person team
- Two data centers

- Small set of requirements: common analytics for machines

First Order of Business: Take Care of the Basics

Get Single-Node Right: Follow the 20-80 Rule

- One table <-> multiple indices by time range
- Disable _source field
- Disable all field
- Use doc_values for storage
- Disable analyzed field
- Tune JVM parameters

Make Decisions with Numbers

- What's the maximum number of recovery threads?
- What's the maximum size of request queue?
- What should the refresh rate be?
- How many shards should an index have?
- What's the throttling threshold?
- Solution: Set up end-to-end stress testing framework

Deployment in Two Data Centers

- Each data center has exclusive set of cities
- Should tolerate failure of a single data center
 - Ingestion should continue to work
 - Querying any city should return correct results

Deployment in Two Data Centers: trade space for availability

Deployment in Two Data Centers: trade space for availability

Deployment in Two Data Centers: trade space for availability

Discretize Geo Locations: H3

Yes. udor Murray cyty. Koreatown Hil 495 W-29 St W 25 0 St W21st Str Rose HT Wighther Flatiron VIITth. Kins Bay Ezzna E 19th St E 17th St E 15th St Oth-St New York Washington St. Mark's PI Square E 6th St E Ath St VIIIug Alphabet 25 City EISTST E 3rd St

Optimizations to Ingestion

Optimizations to Ingestion

Dealing with Large Volume of Data

- An event source produces more than 3TB every day - Key insight: human does not need too granular data - Key insight: stream data usually has lots of redundancy

Dealing with Large Volume of Data

- Pruning unnecessary fields
- Devise algorithms to remove redundancy
- 3TB -> 42 GB, more than 70x of reduction!
- Bulk write

Data Modeling Matters

Example: Efficient and Reliable Join

Example: Efficient and Reliable Join: Use Elasticsearch

- Calculate Completed/Requested ratio from two Kafka topics
 - Can we use streaming join?
 - Can we join on the query side?
 - Solution: rendezvous at Elasticsearch on trip ID

TripID	Pickup Time	Completed		
1	2018-02-03T	TRUE		
2	2018-02-3T	FALSE		
Example: aggregation on state transitions

Optimize Querying Elasticsearch

Hide Query Optimization from Users

- Do we really expect every user to write Elasticsearch queries? - What if someone issues a very expensive query?
- Solution: Isolation with a query layer

Query Layer with Multiple Clusters

Query Layer with Multiple Clusters

Query Layer with Multiple Clusters

- Generate efficient Elasticsearch queries
- Rejecting expensive queries
- Routing queries hardcoded first

Data Center 1

Efficient Query Generation

- "GROUP BY a, b"

Rejecting Expensive Queries

- 1 SELECT count(*), hexagon, minute of day, city
- 2 FROM trips
- 3 GROUP BY hexagon, minute_of_day, city
- 10,000 hexagons / city x 1440 minutes per day x 800 cities - Cardinality: 11 Billion (!) buckets -> Out Of Memory Error

```
"DEMAND":
"CLUSITERS": {
  "TIER0": {
    "CLUSTERS": ["ES_CLUSTER_TIER0"],
  },
  "TIER2": {
    "CLUSTERS": ["ES_CLUSTER_TIER2"]
"INDEX": "MARKETPLACE_DEMAND-",
"SUFFIXFORMAT": "YYYYMM.WW",
"ROUTING": "PRODUCT ID",
```



```
"DEMAND":
"CLUSTERS": {
  "TIER0": {
    "CLUSTERS": ["ES_CLUSTER_TIER0"],
  },
  "TIER2": {
    "CLUSTERS": ["ES_CLUSTER_TIER2"]
"INDEX": "MARKETPLACE
<u>"SUFFIXFORMAT":</u> "YYYYM
"ROUTING": "PRODUCT_ID",
```

```
"DEMAND":
"CLUSTERS": {
  "TIER0": {
    "CLUSTERS": ["ES_CLUSTER_TIER0"],
  "TIER2": {
    "CLUSTERS": ["ES_CLUSTER_TIER2"]
"INDEX": "MARKETPLACE_DEMAND-",
<u>"SUFFIXFORMAT": "YYYYMM.WW</u>",
"ROUTING": "PRODUCT_ID",
```

Summary of First Iteration

Evolution: Success Breeds Failures

Unexpected Surges

Applications Went Haywire

Solution: Distributed Rate limiting

Solution: Distributed Rate limiting

Solution: Distributed Rate limiting

Workload Evolved

- Users query months of data for modeling and complex analytics
- Key insight: Data can be a little stale for long-range queries
- Solution: Caching layer and delayed execution

modeling and complex analytics stale for long-range queries ayed execution

- Redis as the cache store
- Cache key is based on normalized query content and time range

- Redis as the cache store
- Cache key is based on normalized query content and time range

- Redis as the cache store
- Cache key is based on normalized query content and time range

- Redis as the cache store
- Cache key is based on normalized query content and time range

- Redis as the cache store
- Cache key is based on normalized query content and time range

- Redis as the cache store
- Cache key is based on normalized query content and time range

Delayed Execution

- Allow registering long-running queries
- Provide cached but stale data for such queries
- Dedicated cluster and queued executions
- Rationale: three months of data vs a few hours of staleness - Example: [-30d, 0d] -> [-30d, -1d]

Scale Operations

Driving Principles

- Make the system transparent - Optimize for MTTR - mean time to recover
- Strive for consistency
- Automation is the most effective way to get consistency

Challenge: Diagnosis

- Cluster slowed down with all metrics being normal - Requires additional instrumentation
- ES Plugin as a solution

Challenge: Cluster Size Becomes an Enemy

- Elasticsearch cluster becomes harder to operate as its size increases - MTTR increases as cluster size increases
- Multi-tenancy becomes a huge issue
- Can't have too many shards

- 3 clusters —> many smaller clusters
- Dynamic routing
- Meta-data driven

ES Cluster ES Cluster ES Query Cluster Cluster ES Cluster ES Cluster

Federation

Federation

Federation

How Can We Trust the Data?

Too Much Manual Maintenance Work

Too Much Manual Maintenance Work

- Adjusting queue size
- Restart machines
- Relocating shards

Auto Ops

Auto Ops

Ongoing Work for the Future

Future Work

- Strong reliability
- Strong consistency among replicas
- Multi-tenancy

- Three dimensions of scaling: ingestion, query, and operations - Be simple and practical: successful systems emerge from simple ones - Abstraction and data modeling matter

- Invest in thorough instrumentation
- Invest in automation and tools

Summary

