
A snapshot, a
stream, and a
bunch of deltas
Applying Lambda Architectures in a
post-Microservice World

Q-Con London March 6th 2018

Ade Trenaman, SVP Engineering, Raconteur,
HBC Tech
t: @adrian_trenaman

http://tech.hbc.com

t: @hbcdigital fa: @hbcdigital in: hbc_digital

~$3.5Bn
annual e-commerce revenue

00’s of
Stores

What this talk is about
Solving the problem of microservice dependencies with lambda architectures:

> performance, scalability, reliability

Lambda architecture examples:

> product catalog, search, real-time inventory, third-party integration

Lessons learnt:

> It’s not all rainbows and unicorns
> Kinesis vs. Kafka

Some context: a minimalist abstraction of our
architectural evolution

2007
Monolith

2010
Service
Oriented

2012
µ-Services

λ λ λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ

λ λ λ λ λ λ
λ

2016
Rise of

Serverless λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ

λ λ λ λ λ λ
λ

2018+
Multi-banner
Multi-tenant
Multi-region

 λ architectures
Streams

GraphQL In the
seams

Slam on the breaks! Dublin Microservices Meetup, Feb 2015

Part 0
In which we briefly describe lambda architecture, and the Hollywood Principle

Lambda architecture: making batch processing sexy again.

Some kind of
data-source

A view of the data

Batch processing ‘the
baseline’

Stream processing
‘real-time’

Provide low-latency,
high-throughput,
reliable, convenient
access to the data.

Preserve the
integrity and
purpose of the
source of truth.

Stream: an
append-only,
immutable log store of
interesting events.

Lambda architecture: making batch processing sexy again.

Some kind of
data-source

A view of the data

Batch processing ‘the
baseline’

Stream processing
‘real-time’

Need to rebuild the
view? Take latest
snapshot, and replay
all events with a
greater timestamp.

T_7:
po

T_6:
dipsy

T_8:
tinky

T_1: foo
T_2: bar
T_3: pepe
T_4: pipi
T_5: lala

T_1: foo
T_2: bar
T_3: pepe
T_4: pipi
T_5: lala
T_6: dipsy

...

“Don’t call us,
we’ll call you.”

Inversion of control: previously, we ask for data when we need it.

Some kind of
data-source

A view of the data

Provide low-latency,
high-throughput,
reliable, convenient
access to the data.

Preserve the
integrity and
purpose of the
source of truth.

Inversion of control: now, when the data changes, we are
informed.

Some kind of
data-source

A view of the data

Provide low-latency,
high-throughput,
reliable, convenient
access to the data.

Preserve the
integrity and
purpose of the
source of truth.

Part I
In which we learn the perils of caching in a microservices architecture, and how

lambda architecture helped us out.

Gilt: we source luxury brands...

… we shoot the product in our studios

… we receive

… we sell every day at noon

… stampede!

The Gilt Problem
Massive pulse of traffic, every day.

=> serve fast

Low inventory quantities of high value merchandise, changing rapidly
=> can’t cache

Individually personalised landing experiences
=> can’t cache

Caching
“Just say no.”

“Until you have to say yes.”

“Then, just say maybe.”

consumer (e.g. web-pdp)

A stateless, cache-free library, busted.

product-service inventory-service price-service

commons <<lib>>

Hmm, engineer adds a local brand cache
to reduce network calls..

… and then later, another cache for
product information.

Leads to (1) arbitrary caching policies, &
(2) duplicated cache information.

product cache

brand cache

A caching library. Worked well initially, but...

product-service inventory-service price-service

consumer (e.g. web-pdp)

commons <<lib>>

We changed the commons library to
cache products with a consistent, timed
refresh (20m).

Worked well, until the business changed
its mind about one small thing: let’s
make everything in the warehouse
sellable.

Orders of magnitude more SKUs:

* JSON from product service > 1Gb
* Startup time > 10m
* JVM garbage collection every 20m on
cache clear
* ~1hr to propagate a change.
* m4.xlarge, w/ 14Gb JVM Heap

product cache

brand cache

Near real-time caching at scale

Source of Truth - PG

admin

web-pdp

commons

L1

* Startup time ~1s
* No more stop-the-world GC
* ~seconds to propagate a change.
* c4.xlarge (CPU!!!), w/ 6Gb JVM Heap

Next: replace JSON marshalling with binary
OTW format (e.g. AVRO)

S3

Brands, products,
sales, channels, ...

s

Elasticache

product
-service

Kinesis

Calatrava

ᵂ

λ

https://github.com/gilt/calatrava - soon to be public

https://github.com/gilt/calatrava

Part 2
In which we learn how we’ve used Lambda architecture to implement a near

real-time search index, but needed an additional relational ‘view of truth’.

Problem: polling a polling service means changes to
product data are not reflected in realtime.

Source of Truth - PG

admin

product
-service

search
-indexer

Source of Truth - PG

admin

View of Truth - PG

svc-search
-feed

Kinesis

Calatrava

ᵂ
ᵂVOT

* Changes are propagated in real-time to Solr
* Rebuild of index (s + ᵂ*) with zero down time
* Same logic for batch & stream (thank you akka-streams)
* V.O.T.: “We needed a relational DB to solve a relational
problem”

S3

Brands, products,
sales, channels, ...

s

Part 3
In which we use a lambda architecture to facade an unscalable unreliable system

as a reliable R+W API… and benefit from always using the same flow.

Real-time inventory: bridging bricks’n’clicks

internet

OMS

warehouse
stores

Inventory
SOT

?

Real-time inventory: bridging bricks’n’clicks

OMS

warehouse
stores

Inventory
SOT RTAM

* Every sku
inventory level
every 24hrs
* Threshold (O,
LWM, HWM)
inventory events.

λ

Elasticache

R+W

* Absolute
inventory values

REST API

* APIBuilder.io

Making a web reservation

OMS

warehouse
stores

Inventory
SOT RTAM

λ

Elasticache REST API

R+W

1. Is inventory >0 ?
2. Attempt a reservation with OMS. IF it fails, generate a
random reservation ID.
3. Put the change on the RTAM stream
4. Update the cache (and stream, not shown)
5, 6, 7. Trigger a best effort to true-up inventory with ATP
(available to purchase)

1.

2.
3.

4.

λ

5.

6.

7.

X
THERE IS ONLY ONE PATH

Part 4
In which we learn that the paradigm generalises across third-party boundaries.

International E-Commerce: Taxes, Shipping & Duty is
HARD. Performance is critical!

Typical solution: cache for PDP & PA, go direct at checkout. Asymmetric,
with chance of sticker-shock.

Third Party
Shipping Partner

Intl Pricing
Cache

Product Listing

Product Details

Checkout

pricing
service

Elasticache

Stream driven solution with flow.io

Pricing
Service

Product
Listing

Product
Details

Checkout

Part 5
In which we consider Kafka vs. Kinesis

∞
Stream: an immutable, append-only log.

Except it isn’t.

Which makes us use snapshots, and complicates our architecture.

LOG
COMPACTION

“Log compaction”: always remember the
latest version of the same object.

Source of Truth

(1, janes bond)

(2, dr. who)

(1, james bond)

(3, fr. ted)

(1, janes bond)

(2, dr. who)

(1, james bond)

(3, fr. ted)

TABLE
STREAM
DUALITY

KTable & Kafka Streams Library

K-Table & Kafka Streams...

#thanks @adrian_trenaman @gilttech @hbcdigital

(0) Apply lambda arch to create scalable, reliable offline systems.

(1) Replicate and transform the one source of truth

(2) It’s not all unicorns and rainbows: complex VOT, snapshots

(3) Kinesis is the gateway drug; Kafka is the destination.

