

Taming Distributed Pets with Kubernetes

Matthew Bates & James Munnelly QCon London 2018

jetstack.io

Who are Jetstack?

We are a UK-based company that help enterprises in their path to modern cloud-native infrastructure. We develop tooling and integrations for Kubernetes to improve the user experience for customers and end-users alike.

Who are we?

🥤 @mattbates25

👷 @munnerz

JamesMunnelly

INTRODUCTION

Containers and distributed state

- Containers are here and here to stay and many of us are now using them for production services at scale
- Containers are ephemeral and can come and go this is just for stateless applications, right?
- But a container is a.. **process**
- Why should we treat stateful systems differently?
- Large-scale container management systems exist why not use these systems to manage all workloads?

KUBERNETES

Anyone heard of it?

- Kubernetes handles server 'Cattle' to pick and choose resources
- Can be installed on many different types of infrastructure
- Abstracts away the servers so developers can concentrate on code
- Pro-actively monitors, scales, auto-heals and updates

BORG

Clusters to manage all types of workload at Google

Borg cells run a heterogeneous workload... ...long-running services that should "never" go down, and handle short-lived latency-sensitive requests (a few µs to a few hundred ms). Such services are used for end-user-facing products such as Gmail, Google Docs, and web search, and for internal infrastructure services (e.g., BigTable)...The workload mix varies across cells... . Our distributed storage systems such as GFS [34] and its successor CFS, Bigtable [19], and Megastore [8] all run on Borg

https://research.google.com/pubs/pub43438.html

KUBERNETES

Declarative systems management

- Declarative system description using application abstractions
 - \circ Pods
 - Replica Sets
 - Deployments
 - \circ Services
 - Persistent Volumes
 - Ingress
 - Secrets
 - .. and many more!

WORKLOADS ON KUBERNETES: PODS AND CONTAINERS

WORKLOADS ON KUBERNETES: REPLICA SET

'//,

WORKLOADS ON KUBERNETES: SERVICES

RESOURCE LIFECYCLE

Reconciliation of desired state

Why Kubernetes?

Consistent deployment between environments

- Systems often built for the environment they run in
 - e.g. cloud VMs, provisioned via Terraform/CloudFormation or manually

Why Kubernetes?

Visibility into management operations

- Upgrades
- Scale up/down
- Disaster recovery

Due to the way these applications are deployed, it can be difficult and inconsistent to record and manage cluster actions

'//,

Why Kubernetes?

Self-service distributed applications

- Who can perform upgrades? (authZ)
- How do we scale?
- These events must be coordinated with operations teams

Putting a dependence on central operations teams to coordinate maintenance events = time = money

STATEFUL SERVICES Why Kubernetes?

Automated cluster actions

- HorizontalPodAutoscaler allows us to automatically scale up and down
- Teams can manage their own autoscaling policies

STATEFUL SERVICES Why Kubernetes?

Centralised monitoring, logging and discovery

- Kubernetes provides these services already that we can reuse these for all kinds of applications
 - Prometheus
 - Labelling
 - Instrumentation

LAYING THE GROUNDWORK

Features developed by the project in previous releases

STATEFULSET

StatefulSet

Unique and ordered pods

pet-0. pet.default...

"Helm is a tool for managing Kubernetes charts. Charts are packages of pre-configured Kubernetes resources." github.com/kubernetes/helm

Many integrations exist - e.g. see the Helm charts repo...

acs-engine-autoscaler	fix-typo-in-acs-engine-autoscaler-readme (#3889)	2 days ago
🖿 aerospike	[stable/aerospike] Add cmd and args options to Aerospike config (#3856)	5 days ago
anchore-engine	fix README.md typo (#3556)	21 days ago
artifactory	Update README.md with correct default value (#3877)	3 days ago
aws-cluster-autoscaler	Convert registry to k8s.gcr.io (#3160)	2 months ago
bitcoind	Add bitcoind cryptocurrency chart (#3644)	2 days ago
i buildkite	[stable/buildkite] Change name of Docker credentials in Pod (#3627)	21 days ago
centrifugo	[stable/centrifugo] #1785 namespace defined templates with chart name (6 months ago
cert-manager	cert-manager: update with expanded docs. Remove creating TPR support. (24 days ago
🖿 chaoskube	[stable/chaoskube] #1899 add nodeSelector for chaoskube (#3067)	2 months ago
🖿 chronograf	Fix typos: seperated -> separated (#3712)	12 days ago
cluster-autoscaler	Allowing configurable sslCertPath for cluster autoscaler (#3247)	16 days ago
cockroachdb	Update readme to reflect move from incubator to stable for cockroachdb (5 days ago
concourse	[stable/concourse] fixed incorrect values for gitlab auth secrets (#3927	2 days ago
in consul	consul-readability - seperate resources (#3078)	3 days ago
Coredns	CoreDNS chart: update to latest version (#2771)	3 months ago
Coscale	[stable/coscale] #1785 namespace defined templates with chart name (#	6 months ago
dask-distributed	[stable/dask-distributed] #1785 namespace defined templates with char	5 months ago
🖿 datadog	[Datadog] Fix kubeStateMetrics.enabled in values.yaml (#3619)	21 days ago

All distributed systems are not equal

etc..

Problems encountered

Point-in-time management

- Resources are only modified when an administrator updates them
- This is a non-starter for self-service applications

We're back to waking up at 3am to our pagers

Problems encountered

Failure handling

- This requires an administrator to intervene
- Prone to errors, and requires specialist knowledge

We're back to waking up at 3am to our pagers

Problems encountered

No native provisions for understanding the applications state

• There's no way to quickly see the status of a deployment in a meaningful way

Problems encountered

Difficult to understand why and what is happening

• Opaque 'preStop' hook allows us to run a script before the main process is terminated

lifecycle: preStop:

exec:

command: ["/bin/bash","/pre-stop-hook.sh"]

Application-specific controllers that extend the Kubernetes API

"An Operator represents human operational knowledge in software to reliably manage an application." (CoreOS)

Application-specific controllers that extend the Kubernetes API

- Follows the same declarative principles as the rest of Kubernetes
- Express desired state as part of your resource specification
- Controller 'converges' the desired and actual state of the world

Application-specific controllers that extend the Kubernetes API

Examples include:

- etcd-operator (<u>https://github.com/coreos/etcd-operator</u>)
- service-catalog (<u>https://github.com/kubernetes-incubator/service-catalog</u>)
- metrics (<u>https://github.com/kubernetes-incubator/custom-metrics-apiserver</u>)
- cert-manager (<u>https://github.com/jetstack/cert-manager</u>)
- navigator (<u>https://github.com/jetstack/navigator</u>)

CUSTOM RESOURCES

Standing on the shoulders of Kubernetes

- API "as a service"
- Kubernetes API primitives for 'custom' types
 - CRUD operations
 - Watch for changes
 - Native authentication & authorisation

~ kubectl get elasticsearchclusters

CUSTOM RESOURCES

Standing on the shoulders of Kubernetes

CustomResourceDefinition (CRD)

- Quick and easy. No extra apiserver code
- Great for simple extensions
- No versioning, admission control or defaulting

CUSTOM RESOURCES

Standing on the shoulders of Kubernetes

Custom API server (aggregated)

- Full power and flexibility of Kubernetes Similar to how many existing APIs are created
- Versioning, admission control, validation, defaulting
- Requires etcd to store data

Cassandra on Kubernetes

Let's see it in action

jetstack.io

WHAT'S GOING ON

Cassandra on Kubernetes

Native Kubernetes resources are created

StatefulSets	Load Balancers/Services	Persistent Disks	Workload identities
cass-europe-west2-a	client-service	cass-europe-west2-a-0	cass-europe-west2-a
		cass-europe-west2-a-1	
cass-europe-west2-b	discovery-service	cass-europe-west2-a-2	cass-europe-west2-b
		cass-europe-west2-b-U	
		cass-europe-west2-b-1	
		cass-europe-west2-b-2	

'//,

WHAT'S GOING ON

Cassandra on Kubernetes

Custom 'entrypoint' code runs before Cassandra starts

WHAT'S GOING ON

Cassandra on Kubernetes

Custom 'entrypoint' code runs before Cassandra starts

Problems encountered

Application state information collection is varied

• Kubernetes usually provides the ability to inspect with kubectl describe

vents:				
Туре	Reason	Age	From	Message
Normal	Scheduled	1 m	default-scheduler	Successfully assigned suitecrm-oauth-oauth2-pr-8568d7c9cd-vzcsr to gke-je
Normal	SuccessfulMountVolume	1 m	kubelet, gke-jetstack-infra-pool-green-ca2c7d86-33j9	MountVolume.SetUp succeeded for volume "default-token-gsdxr"
Normal	Pulling	1 m	kubelet, gke-jetstack-infra-pool-green-ca2c7d86-33j9	pulling image "jetstackexperimental/oauth2-proxy:0.1"
Normal	Pulled	1m	kubelet, gke-jetstack-infra-pool-green-ca2c7d86-33j9	Successfully pulled image "jetstackexperimental/oauth2-proxy:0.1"
Normal	Created	1 m	kubelet, gke-jetstack-infra-pool-green-ca2c7d86-33j9	Created container
Normal	Started	1 m	kubelet, gke-jetstack-infra-pool-green-ca2c7d86-33j9	Started container

Problems encountered

Reimplementing large parts of Kubernetes

- Limitations in StatefulSet result in the entire controller being reimplemented
- We should be building on these primitives, not recreating them

Problems encountered

- No easy way to see if 'nodetool decommission' succeeded
- Makes assuredly executing cluster infrastructure changes difficult

This is on account of the operator losing control after the process has started

Navigator

Co-located application intelligence

NAVIGATOR Motivations

- Pro-actively monitor and heal applications
- Reduce the operational burden on teams by making management of complex applications as easy as any other Kubernetes resource
- Make it easy to understand the state of the system
- Re-use existing Kubernetes primitives don't reinvent the wheel
- Providing a reliable and flexible building block for integrating with the varied and sometimes difficult database APIs/management tools

NAVIGATOR

Navigator and Pilot Architecture

NAVIGATOR Features

- Follows the 'operator pattern'
- Abstracts configuration of complex topologies (i.e. automated rack awareness, sharding)
- Manages the lifecycle of applications over time
- Provides a common and familiar interface for modifying applications
- Validates configurations and helpfully rejects invalid requests

PILOTS - COLOCATED INTELLIGENCE

Pilots alongside our processes

- Pilot 'wraps' the Elasticsearch process
- Performs operation on the underlying database node
- Updates the Navigator API with information about the state of the node
- 'GenericPilot' to make it easy to extend
- Similar to kubelet

PILOTS - COLOCATED INTELLIGENCE

Pilots alongside our processes

- Examples of information reported to Pilots:
 - Node's reported version
 - Amount of data on node
 - Node health
- Leader elected Pilots also report overall cluster status
- This information influences which 'Action' is taken

NAVIGATOR

From YAML to Elasticsearch cluster

\$ kubectl create -f elasticsearch-cluster.yaml

navigator-apiserver

elasticsearch-controller

Data/Ingest StatefulSet(s)

Master StatefulSet(s)

Role/RoleBinding

Service

ServiceAccount

NAVIGATOR

'//,

From YAML to Elasticsearch cluster

• Providing sensible and safe defaults makes it easier for developers to consume complex applications 'as a service'

- 1 apiVersion: navigator.jetstack.io/v1alpha1
 2 kind: ElasticsearchCluster
 3 metadata:
 4 name: demo
 5 spec:
- 6 ## Omitting the minimumMasters fields will cause navigator to automatically
 - ## determine a quorum of masters to use.
- 8 # minimumMasters: 2

7

Elasticsearch scale-up and upgrade

Actions in action

ACTIONS

'//,

Transitioning cluster state with Actions

- A small unit of work to perform
- Can be reasoned about and debugged by users through 'kubectl describe'

Tyne	Reason	Ade	From	Message
1 ypc	Reason	ASC .	11011	message.
Normal	CreateNodePool	3m	navigator-controller	Created node pool "mixed"
Normal	CreatePilot	3m	navigator-controller	Created pilot "es-demo-mixed-0"
Normal	CreatePilot	3m	navigator-controller	Created pilot "es-demo-mixed-1"
Normal	CreatePilot	3m	navigator-controller	Created pilot "es-demo-mixed-2"
Normal	UpdateVersion	2m	navigator-controller	Updating replica es-demo-mixed-2 to version 6.1.3
Warning	ErrUpdateVersion	9s (x5 over 33s)	navigator-controller	Pilot "es-demo-mixed-2" has not finished updating to version "6.1.3"
Normal	UpdateVersion	1s	navigator-controller	Updating replica es-demo-mixed-1 to version 6.1.3

ACTIONS

Transitioning cluster state with Actions

What constitutes an Action?

- Upgrade
- Scale
- Backup
- Apply new configuration
- Create or delete a node pool
- Adjust resources assigned to a node pool
- Resize persistent disk

\$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

navigator-apiserver

elasticsearch-controller

Elasticsearch upgrade action

\$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

1. Observes change

elasticsearch-controller

Elasticsearch upgrade action

kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}' \$

1.

Observes change 2. Evaluates each 'Pilot' resource one at a time

Elasticsearch upgrade action

\$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

- 1. Observes change
- 2. Evaluates each 'Pilot' resource one at a time
 - a. Is the node healthy?
 - b. Is the node already at the desired version?
 - c. Is the cluster healthy?

Elasticsearch upgrade action

\$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

- 1. Observes change
- 2. Evaluates each 'Pilot' resource one at a time
 - a. Is the node healthy?
 - b. Is the node already at the desired version?
 - c. Is the cluster healthy?
- 3. Inform the relevant Pilot it is to be upgrade

Elasticsearch upgrade action

\$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

- 1. Observes change
- 2. Evaluates each 'Pilot' resource one at a time
 - a. Is the node healthy?
 - b. Is the node already at the desired version?
 - c. Is the cluster healthy?
- 3. Inform the relevant Pilot it is to be upgrade
- 4. Upgrade the node that needs to be upgraded

Elasticsearch upgrade action

ACTIONS

'//,

Transitioning cluster state with Actions

Why do it this way?

- Controller can evaluate *all* actions to perform, and sequence them appropriately
- This allows one central 'brain' when making infrastructure changes
- Clearly defined and contained as a unit of work in code
- It can wait for 'pre-conditions' to be met e.g.
 - waiting for shards to be drained from an Elasticsearch node
 - waiting for a node to be decommissioned

ACTIONS

Transitioning cluster state with Actions

- Controller can evaluate all actions that need to be performed and sequence them safely
- Prevents accidental mistakes by administrators

NOTINGE	opulaceversion	2111	navigator controtter	opdating repetca es demo mixed i co version o.i.s
Warning	ErrUpdateVersion	6m (x4 over 7m)	navigator-controller	Pilot "es-demo-mixed-1" has not finished updating to version "6.1.3"
Normal	UpdateVersion	6m	navigator-controller	Updating replica es-demo-mixed-0 to version 6.1.3
Normal	UpdateVersion	4m (x2 over 11m)	navigator-controller	Updating replica es-demo-mixed-2 to version 6.1.3
Normal	UpdateVersion	4m	navigator-controller	Updated node pool "mixed" to version "6.1.3"
Normal	Scale	4m	navigator-controller	Scaled node pool "mixed" to 4 replicas
Normal	CreatePilot	4m	navigator-controller	Created pilot_"es-demo-mixed-3"

• Upgrade, and scale once the cluster is in a healthy state.

THE FUTURE

What's next for Navigator?

- Improving existing controller intelligence
- Supporting more database specific features (e.g. x-pack, rack awareness)
- Support ad-hoc administrator initiated Actions
- Automated OS and application patching through 'managed versions'
- Custom 'kubectl get' output (from Kubernetes 1.10 onwards)
 - Makes custom resources 'feel native' in the system

<pre>\$ kubectl</pre>	get esc demo				CONTRACTOR OF
NAMESPACE	NAME	HEALTH	MASTERS	DATA	INGEST
red-team	demo	Green	3/3	4/4	4/4
blue-team	prod-cluster	Yellow	3/3	3/4	3/4

SUMMARY

- Kubernetes provides us the building blocks to orchestrate and manage stateful systems
- Consistent deployment of stateless + stateful workloads across multiple environments means more efficiency and ability to deploy quicker without the complexities and overhead of centralised management
- Kubernetes is highly extensible: we can build on top of the API with custom resources and codify stateful operational logic into controllers

CREDITS To our other team members working on Navigator

Richard Wall

Louis Taylor

Thanks!

hello@jetstack.io

@JetstackHQ github.com/jetstack/navigator jetstack.io

KUBERNETES ALL THE THINGS

Stateless and stateful workloads in cluster co-existence

KUBERNETES ALL THE THINGS

Stateless and stateful workloads in cluster co-existence

KUBERNETES ALL THE THINGS

Stateless and stateful workloads in cluster co-existence - across cloud

NAVIGATOR

Navigator and Pilot Architecture

NAVIGATOR

Navigator and Pilot Architecture

Kelsey Hightower • Geb 13 Over time we'll be able to codify that operational expertise into some universal control loop, but that's still a work in progress.

But there's mixed option

Kelsey Hightower @kelseyhightower

Kubernetes has made huge improvements in the ability to run stateful workloads including databases and message queues, but I still prefer not to run them on Kubernetes.

2:04 PM - 13 Feb 2018

https://twitter.com/kelseyhightower/status/963413508300812295

RESOURCE LIFECYCLE

From YAML to pods

