
P ra g m a t i c E vo l u t i o n o f S u p e r 6
a n d S k y B e t f o r Re s i l i e n c y

M i c h a e l M a i b a u m
S k y B e t t i n g & G a m i n g

@ m m a i b a u m

@mmaibaum

Pragmatic and Achievable

• Focus is on pragmatic, achievable improvements in availability
• Using common patterns
• Concrete examples that apply to many people in many companies

@mmaibaum

• Acquired by Sky in 2000 as part of
the Sports Internet Group &
rebranded in 2002

• Soccer Saturday Super6 launched
in 2008 -first in-house
development

• SB&G sold to CVC in 2015

A Brief History of Sky Betting & Gaming

@mmaibaum

Starting out - Infrastructure & Ops Only

• Tech Team
• No in-house development
• Hosting and operating third party vendors applications
• Waterfall project management and delivery

@mmaibaum

50M

Monthly Transactions (millions)
350M

2010 2012 2014 2016

Transactions

@mmaibaum

One challenge to cope with is traffic that looks like this

@mmaibaum

@mmaibaum

What happens when Jeff says Super 6 on Sky Sports…

@mmaibaum

What happens when Jeff says Super 6 and something
interesting happens in the football…

@mmaibaum

A Diverse Technology Stack

@mmaibaum

Overall Service Performance

• Lots of definitions of ‘reliability’ or ‘availability’ or ‘resilience’

• Today focus on reducing the impact of failure and maintaining overall
service availability

• Percentage of time when no major product unavailable
• 14/15 - 97.9%
• 15/16 - 99.79%
• 16/17 - 99.9%

S u p e r 6 L e a g u e C a l c u l a t i o n s

@mmaibaum

League Calculations

• Customers predict scores

• get points for correctly predicting the result and more points for the
correct score

• Round, Month and Season leagues

@mmaibaum

League Calculations

• Update scores and leagues as goals go in

• Hit a scaling wall as product grew

• Standard LAMP application architecture, League calculations falling
behind

• MySQL table, lots of updates to each entry, lots of sorting/reads during
the updates

• Need to redesign and improve reliability

• Lots of solutions proposed

• Many complex, some fit to scale to 100s of millions

• Quite a few included ‘next gen’ distributed computational or database
services

@mmaibaum

League Calculations

Web Tier

API Service

MySQL

Score
Service

Original Approach

Web Tier

League Service

MySQL

Score Service

New Approach

Score Updates
and leagues held in

memory

DB updates, sorts
for every change

@mmaibaum

League Calculations

Web Tier

League Service

MySQL

Score Service

New Approach
But what happens

when the league service
crashes?

@mmaibaum

Run more instances, do the work multiple times

League ServiceLeague Service

Web Tier

League Service

MySQL

Score Service

@mmaibaum

Take Aways

• Isolate the problem, you probably don’t need to rewrite everything

• Don’t overcomplicate things

• Take advantage of any reduction in accuracy requirements

• Only the final result is truly crucial so any rare edge cases in
synchronisation can be tolerated

D e co u p l i n g Re s o u rce s

@mmaibaum

Core Account Overview

OpenBet Stored Procedures & DB

OXI XML

Login UI

Payment
Router

Sidebar UI

OpenBet
Payments App

SSO & Identity
API Account API

SSO
Consumers

Other
Products

Payment
Services

>4.5THz CPU
>3 TB RAM
>300 VMs

@mmaibaum

Core Account Overview

OpenBet Stored Procedures & DB

OXI XML

Login UI

Payment
Router

Sidebar UI

OpenBet
Payments App

SSO & Identity
API Account API

SSO
Consumers

Other
Products

Payment
Services

On type of slow request
consume all the resources in a
critical tier of the application

@mmaibaum

Reducing the Blast Radius
Can one kind of slow request consume all the resources in a critical tier of the application?

• We experienced problems with the
PSP integration, causing OXi processes
to stack up waiting for responses

• Eventually not enough OXi processes
were available to service the non-
payments workload

@mmaibaum

Separating Services and Limiting Resources

• We kept experiencing problems with the PSP

• By separating the OXi endpoints we could limit the
impact on other services

• Limited number of payment ‘procs’ if they
saturate, other requests fail quickly

• Generally better visibility of behaviour of the
different requests once separated out. Easier to
manage and scale

@mmaibaum

Reduce dependency on the third party

• Upper limit to reliability when you
have one third party you rely on…

• So get more!

@mmaibaum

Take Aways

• You might have a fairly monolithic service, or a single big DB but you can
often still implement resource limits at some level of the application

• In many closely coupled systems limiting resources to particular use-
case/journey is a key step in limiting the blast radius of a failure

• Your service can’t be more reliable than an external third party service it
relies on, consider using multiple suppliers - often commercially
advantageous

P ro a c t i ve B a n n e r i n g

@mmaibaum

After the Grand National

• Grand National is a very busy day…

17,000 bets / minute

93 payments / second

• But taking the bets is the easier bit

@mmaibaum

After the Grand National

• Everyone comes back after the race
to find out if they’ve won anything

25,000 logins/minute

• Querying account history is
relatively slow

• We probably haven’t actually
settled bets yet anyway…

Example from a big race

(Cheltenham Gold Cup)

@mmaibaum

After the Grand National

• We’ve crashed and burned under the
load before

• DB maxes out, load balancers burning,
web servers and redis session stores
all under massive pressure

@mmaibaum

Banners

• Banner deliberately

• Various banner types
• Full banner for a minute or two for those not

already on site
• Account history banner until at least the most

popular selections settled

• Gradually re-enable access
• Ramp percentage of users

@mmaibaum

Simple Smart Banners

• Implemented in Layer 7 Load Balancer
rules

• Allow a configurable percentage of
users in

• Once allowed in, allow users to
continue using service until access
code changed

threshold = 25

access_code = ‘a3fd3d2df4’

banner_cookie = get_cookie(‘smart_banners’)
if (banner_cookie IS NULL) {

set_cookie(bucket = random_number(1,100))

}

customer_bucket = cookie.get_value(‘bucket’)

customer_access_code =
cookie.get_value(‘access_code’)

if (access_code == customer_access_code) {

route_request(‘service’)

}

else if (customer_bucket <= threshold) {

set_cookie(‘access_code’ = access_code)

route_request(‘service’)

}
else {

route_request(‘banner’)

}

Pseudocode

@mmaibaum

Take Aways

• Graceful Degradation less impactful than major failure and ‘recovery’ is
quicker

• You can choose to invoke a degraded, less demanding operational mode

• We could make Account History work for post-GN load

• Just not important enough to invest in (yet)

C i rc u i t B re a ke r s

@mmaibaum

My Bets

@mmaibaum

My Bets

Web Pages

Bet API

Couchbase

Core API

~60,000 req/min

Circuit Breaker with global state

Circuit Breaker with local state

Circuit breakers used to protect higher level services from underlying failures

@mmaibaum

Take Aways

• Circuit breakers powerful pattern, crucial for maintaining customer
experience

• Tuning sensitivity important, can amplify small failures into big ones

• Unless you need that twitchy, coordinated response, consider local circuit
breaker state over global

W h a t a b o u t P e o p l e ?

@mmaibaum

Systems & Software Architecture isn’t enough
• Organisational Architecture & Culture are crucial

Does the whole business care about failure?

Do teams own and support their services?

How do we identify most pressing problems?

Reactive vs proactive?

How do you persuade people care?

Is technology seen as a ‘contractor’

@mmaibaum

• Is the business reactive

– You’ve had one big failure and then they care (briefly?)

– or

– Pro-active - they set targets and provide time and budget to achieve them?

• Perception of impact vs Actual impact

• We’ve been reactive at times

– big failures leading to a massive focus on reliability

– generally good performance leading to a lack of maintenance

• Too much of either isn’t particularly healthy

Reactive or Proactive?

@mmaibaum

• Error budgets

• Classes of service

If you’ve got 100 things you could make better…

How do you prioritise?

@mmaibaum

• A way of setting a risk appetite

• Reduce pressure to react when you don’t need to

• Help identify the components and problems that are causing the biggest impact

Error Budgets

Products
Total

Revenue Loss
Error Budget

Used
Monthly
Budget

£40k 75% £50k

£500 5% £10k

£35k 87.5% £40k

£1.5k 5% £30k

@mmaibaum

Error Budgets

• Trends

• Should you ‘spend’ your budget?

@mmaibaum

• Ensure ongoing capacity for different types of improvement

• 50% strategic product improvements

• 30% technical improvements and maintenance

• 10% Product Small Improvements & Experiments

• 10% unplanned work

Classes of Service

Measure. Make work visible.
 Change the balance depending on the situation!

@mmaibaum

Pride
Knowledge

Feeling the Pain

Technical Ownership

@mmaibaum

Fire Drills
• Small and large scenarios, Component failure and DR drills

• Things will always fail, even if your system is degrading gracefully it is still
degraded

• As you grow the team, ways of managing incidents evolve, coordination becomes
more important

– Incident Command, Roles & Responsibilities

@mmaibaum

Take Aways

• Common patterns, achievable in your team/architecture, can make a big
difference through the accumulation of small improvements

• Culture and ways of working are more important than any technical magic
wand, no matter how shiny

H1 17/18 - 99.99%

