
How to Re-Architect without
Breaking Stuff (too much)
Owen Garrett
March 2018
owen@nginx.com

All problems in computer
science can be solved by
another layer of indirection

--- David Wheeler, FRS

“This giant piece of software that made our

company successful... is now a problem.”

The transition to a Modern Application Architecture

From Monolith to Microservices

A giant piece of software

Silo’ed teams (Dev, Test, Ops)

Big-bang releases

Persistent deployments

Fixed, static Infrastructure

Complex protocols (HTML, SOAP)

Small, loosely connected Services

DevOps Culture

Continuous delivery

VMs, Containers, Functions

Infrastructure as code

Lightweight, Programmable (REST, JSON)

Disruption is happening
at the speed of software

NGINX as a Shock Absorber

Internet

App
(static cluster)

Other web and
application services

App B
(static cluster)

NGINX as an Insulator

Internet

App
(static cluster)

Other web and
application services

App B
(static cluster)

0%

10%

20%

30%

40%

50%

60%
06
/2
01
2

12
/2
01
2

06
/2
01
3

12
/2
01
3

06
/2
01
4

12
/2
01
4

06
/2
01
5

12
/2
01
5

06
/2
01
6

12
/2
01
6

06
/2
01
7

12
/2
01
7

The busiest sites in the world use NGINX open source

Four steps to
non-disruptive rearchitecting

Be a hero – make changes…
all while keeping the lights on!

Change the tyres
while the car is moving

Roadmap to rearchitecting

1. Plan
2. Prepare
3. Package
4. Proceed

On-Prem Datacenter

Datacenter
Load

Balancer

Application

Per-Application
Load Balancer

Per-Service
Load

Balancer

Cloud Datacenter

Cloud
Platform

Load
Balancer

Per-Application
Load Balancer

Per-Service
Load

Balancer

1. Your global architecture will be fluid

• Distribute traffic
using DNS and redirects

• Funnel traffic through
concentrators

• Distribute these stateless
concentrators

Plan your global architecture for change

Plan how you route traffic to the correct datacenter:

1. Segment with DNS
2. Use External Redirects
◦ Clients connect directly to the location of the service they are using
◦ Use the proxy to push out redirects

3. Route traffic internally
4. Use X-Accel-Redirect
◦ All traffic is handled through the same NGINX cluster, and internally

routed to cloud

Get started with X-Accel-Redirect
• A more sophisticated alternative to a simple

proxy_pass

• Request goes to local server

• Local server internally redirects to remote
server

Ideal for moving content to cloud storage or
serverless, while retaining NGINX-based
authentication and logging .

Client can never access remote server directly.

GET /resource GET /resource

GET /resource

X-Accel-Redirect

2. Prepare to execute the change

• Remove or streamline dependencies outside the core
devops pipeline
◦ Hardware replace
◦ External business or technical processes

• Don’t underestimate the strength of “we’ve always done it
this way”

Example – Hardware Replace

Example – Hardware Replace

Datacenter Load Balancer Application-specific Proxy

Example – Hardware Replace with NGINX

• Cost savings
Save more than 80% and
run on commodity
hardware

• Modernize
Get the flexibility to move
to the cloud,
microservices, Devops,
and more

• No limits
No artificial bandwidth or
throughput caps to slow
you down

3. Package your Applications
• Package as VMs or Containers; full-stack CI & CD should be your goal

Agile Methodology

code

bu
ild

test

re
lea

se

plan

deploy

operate

monitor

DEV OPS

AGILE
DEVELOPMENT

CONTINUOUS
INTEGRATION

CONTINUOUS
TESTING

CONTINUOUS
DELIVERY

Automation Tools

code

bu
ild

test

re
lea

se

plan

deploy

operate

monitor

DEV OPSBuckBazel

Bamboo

4. Proceed to operate the deployment

Internet

4. Proceed to operate the deployment

Internet

Blue-green Deployments
Split Clients / A|B testing
Auto-Scaling
Canary Releases
Health Checks and Slow Start

http {
upstream blue_servers {

server 10.0.0.100:3001;
server 10.0.0.101:3001;

}

upstream green_servers {
server 10.0.0.104:6002;
server 10.0.0.105:6002;

}

split_clients "${remote_addr}" $appversion {
5% green_servers;
* blue_servers;

}

server {
listen 80;
location / {

proxy_pass http://$appversion;
}

}
}

Split Clients configuration
• Split traffic to multiple servers based on,

for example, source IP address

• Just one example of the many ways to
route traffic in NGINX:
• By user cookie or authentication

token
• By source geography

• Forms the basis of blue-green
deployments

• Monitor NGINX access logs or extended
status to measure health of new, green
server

Service Discovery with Consul

resolver consul:53 valid=10s;

upstream service1 {
zone service1 64k;
server service1.service.consul service=http

resolve;
}

• NGINX open source can be
configured using an agent that is
triggered by changes to the
service database

• NGINX Plus will look up consul in
/etc/hosts/ file if using links or
using Docker embedded DNS
server.

• By default Consul uses this
format for services:
[tag.]<service>.service[.d
atacenter].<domain>

https://github.com/nginxinc/NGINX-
Demos/tree/master/consul-template-demo

d

Active Health Checks
upstream my_upstream {

zone my_upstream 64k;
server server1.example.com slow_start=30s;

}
server {

...
location /health {

internal;
health_check interval=5s uri=/test.php

match=statusok mandatory;
proxy_set_header HOST www.example.com;
proxy_pass http://my_upstream;

}
}
match statusok {

Used for /test.php health check
status 200;
header Content-Type = text/html;
body ~ "Server[0-9]+ is alive";

}

NGINX open source passively detects
application failures

NGINX Plus provides “Active Health Checks”

• Polls /URI every 5 seconds

• If response is not 200, server marked as
failed

• If response body does not contain
“ServerN is alive”, server marked as
failed

• Recovered/new servers will slowly ramp
up traffic over 30 seconds

Move to Microservices

“As we moved to microservices we
realized that we needed a much

smarter way of routing pages to our
applications. The big benefits of

NGINX Plus were firstly the support,
the DNS configuration which allowed

us to use sophisticated services in
AWS, and the metrics told us which

servers were failing.”

- John Cleveley, Senior Engineering Manager

Two proven microservices
delivery patterns

1.

Managing north-south traffic
with an Ingress Controller

Starting from your Monolith…

1. Containerise your Monolith

Load
Balancer

2. Decompose your Monolith

User Data

Orders

Pod

Pod

Pod

Pod

Pod Pod

Photo
Uploader

Photo
Resizer

Content
Service

Load
Balancer

3. Rearchitect your Monolith

Pod

Auth
Proxy

Pod

Photo
Uploader

Pod

Photo
Resizer

Pod

Content
Service

Pod

Album
Manager

Pod

User
Manager

Pod

Pages

Load
Balancer

Deploy on, for example, Kubernetes

K8s API Server

Pod

User
Manager

Pod

Photo
Uploader

Pod

Content
Service

Pod

Auth
Proxy

Kubernetes Ingress Resource
Ingress:
• Built-in Kubernetes resource

• Automates configuration for
an edge load balancer (or
ADC)

Ingress features:
• L7 routing based on the

host header and URL
• TLS termination

1. apiVersion: extensions/v1beta1
2. kind: Ingress
3. metadata:
4. name: hello-ingress
5. spec:
6. tls:
7. - hosts:
8. - hello.example.com
9. secretName: hello-secret
10. rules:
11. - host: hello.example.com
12. http:
13. paths:
14. - path: /
15. backend:
16. serviceName: hello-svc
17. servicePort: 80

Application Delivery on Kubernetes

K8s API Server

Pod

User
Manager

Pod

Photo
Uploader

Pod

Content
Service

Pod

Auth
Proxy

Ingress
Controller

Subscribe to Ingress Resources

Limitations of the Kubernetes Ingress Resource

1. kind: Ingress
2. metadata:
3. name: hello-ingress
4. spec:
5. tls:
6. - hosts:
7. - hello.example.com
8. secretName: hello-secret
9. rules:
10. - host: hello.example.com
11. http:
12. paths:
13. - path: /
14. backend:
15. serviceName: hello-svc
16. servicePort: 80

Only does:
• Routing on the host header and URL
• TLS termination

What about:
• Session persistence
• JWT validation
• Rewriting the URL of a request
• Enabling HTTP/2
• Choosing a load balancing method
• Changing the SSL parameters
• …

Extending the Kubernetes Ingress Resource
Annotations

• Vendor-specific configuration
settings

Configuration Snippets

• Embed NGINX configuration
directives directly into
config contexts

or… Edit Ingress Controller template directly

1. apiVersion: extensions/v1beta1
2. kind: Ingress
3. metadata:
4. name: hello-ingress
5. annotations:
6. nginx.org/lb-method: "ip_hash"

1. apiVersion: extensions/v1beta1
2. kind: Ingress
3. metadata:
4. name: hello-ingress
5. annotations:
6. nginx.org/location-snippets: |
7. proxy_set_header X-Custom-Header-1 foo;
8. proxy_set_header X-Custom-Header-2 bar;

Ingress Controller: where to find out more

• GitHub: https://github.com/nginxinc/kubernetes-ingress

• NGINX Documentation:
• https://www.nginx.com/blog/introducing-nginx-kubernetes-

ingress-controller/

• NGINX offers a fully-supported Ingress Controller implementation
based on NGINX Plus and the Open Source IC
• Detailed metrics
• Faster, more reliable reloads
• Full support

https://github.com/nginxinc/kubernetes-ingress
https://www.nginx.com/blog/introducing-nginx-kubernetes-ingress-controller/

2.

Managing east-west traffic
with an internal router

Limitations of the Ingress Controller alone

Ingress
Controller

Pod

Auth
Proxy

Pod

Photo
Uploader

Pod

Photo
Resizer

Pod

Content
Service

Pod

Album
Manager

Pod

User
Manager

Pod

Pages

Introducing the Router Mesh model

Ingress
Controller

Pod

Auth
Proxy

Pod

Photo
Uploader

Pod

Photo
Resizer

Pod

Content
Service

Pod

Album
Manager

Pod

User
Manager

Pod

Pages

Pod

Router
Mesh

Router Mesh relies on Service Discovery

● Required when:
� New Services are added
� Instances of existing services are

added

● Proxies are configured using
triggers:
� Ansible Roles
� Consul templates

A

C

B

...

?
DNS

Router Mesh relies on Service Discovery

● Required when:
� New Services are added
� Instances of existing services

are added

● Proxies are configured using triggers
� Ansible Roles
� Consul templates

● NGINX Plus uses DNS
� Vanilla DNS server
� Consul, kube-dns, Mesos-dns

resolver consul:53 valid=10s;

upstream service1 {
zone service1 64k;
server service1.service.consul

service=http resolve;
}

Router Mesh provides internal Load Balancing

● Provides:
� Scalability
� High-Availability
� Circuit-breaker pattern

C

A
A

B
B

D
D

D
D

Router Mesh provides internal Load Balancing

● Provides:
� Scalability
� High-Availability
� Circuit-breaker pattern

● NGINX Plus adds:
� Application-level health

checks
� Slow-start on new server
� Extended Status telemetry

Roadmap to rearchitecting

• Plan – for parallelism

• Prepare – for the process of change

• Package – positioning yourself for CI/CD agility

• Proceed – using a proxy to orchestrate and insulate
changes

• Solutions: NGINX Ingress Controller, internal Router Mesh

Non-disruptive Microservices Adoption Roadmap

Kubernetes

C

C

C

C

C

C

C

C

Ingress
Controller

Simple Ingress Controller

Kubernetes

Ingress
Controller

Ingress Controller
with Router Mesh

C C C C

C C C C

Router

Kubernetes

Ingress
Controller

Scaling to Multiple Apps

C C C C

C C C C

Router

C C C C

C C C C

Router

“All problems in computer
science can be solved by
another layer of indirection

--- David Wheeler, FRS

“All problems in computer
science can be solved by
another layer of indirection

...except too many levels of
indirection”

--- David Wheeler, FRS

Very complex application-delivery pipelines
Web Application

Firewall
Web

CacheNetwork Firewall Load Balancer
SSL Reverse

Proxy
Authentication

Gateway Load Balancer Application

NGINX Plus minimizes the amount of indirection
Web Application

Firewall
Web

Cache

NGINX Plus with:
• ModSecurity Web Application Firewall
• OAuth2 and JWT validation
• Third-party Certified Authentication Modules

Network Firewall Load Balancer
SSL Reverse

Proxy
Authentication

Gateway Load Balancer Application

Where to next?

• You can get NGINX from nginx.org, your OS vendor or
favourite PPA

• Find us on floor 3, near the keynote theatre

• Interested in getting more from NGINX:
◦ NGINX Plus developer subscription

• Thank you!

owen@nginx.com

Thank you

