
@spoole167

Java	at	Scale
from	the	smallest		devices	to	the	largest		and	beyond

QCON	2018

@spoole167

About	me

Steve	Poole
IBM	Lead	Engineer	/	Developer	advocate
Making	Java	Real	Since	Version	0.9
Open	Source	Advocate	
DevOps	Practitioner	 (whatever	that	means!)
Driving	Change

@spoole167

How	do	you	think	about	Java?

@spoole167

Like	this?

Java	ME Java	SE Java	EE

@spoole167

EE	vs		SpringMicro	Profile

Like	this?

Like	this?

@spoole167

Whatever	you
think	about	Java

You’re	probably	only
thinking	about	Standard	
edition
or	Enterprise	edition

SE	or	EE..

@spoole167

As	Java	developers	we	take	Java	for	granted

@spoole167

And	ignore	the	JVM	
in	the	room

@spoole167

In	this	story	– it’s	the	JVM	that’s	the	star

@spoole167

Your	world	might	look	like	this

Enterprise	Java

Standard	Java

Micro		/	Embedded	 Java

@spoole167

Hardware

Virtualization	Layer	(s)	and	Operating	Systems

Threading
Locking

Diagnostics
IO

Class	Files

Java	Runtime

Memory	
Management JITMine’s	more	

Like	this

@spoole167

Hardware

Virtualization	Layer	(s)	and	Operating	Systems

Threading
Locking

Diagnostics
IO

Class	Files	

Java	Runtime

Memory	
Management JITMine’s	more	

Like	this

@spoole167

JVM	developers	worry	about	

WORA

So	you	don’t	have	to

@spoole167

JVMs	turn	your	model	of	an	application

into	machine	code..

So	you	don’t	have	to

@spoole167

Wait		- what?

@spoole167

JVMs		do	the	heavy	lifting	in	transforming	your	model	of	an	application	
into	the	real	thing.

Your	model Multiple	 real	applications	

JVM

Code
Instructions	
for	vitual h/w

Real	instructions	 for	real	(and	varied)		
h/wjavac

@spoole167

Hardware

Virtualization	Layer	(s)	and	Operating	Systems

Threading
Locking

Diagnostics
IO

Class	 Files	

Java	Runtime

Memory	
Management JIT

In	this	talk	we’re	going	to	explore	why	this	design	is	so	successful	
and	how	far	it	can	be	bent,	squashed	and	beaten	into	new	shapes.

We’ll	answer	questions	like	

What	does	‘scale’	mean?
How	far	can	you	take	your	Java	skills?
What’s	the	future	for	Java?
What	are	the	important	challenges	for	Java	
And	are	we	doing	enough	to	rise	to	them?

@spoole167

So	what	is	a	Java	Virtual	Machine?

@spoole167

A	very	quick	primer	on	a	Java	SE	JVM	

The	Java®	
Language	
Specification

“The	Java	platform	was	initially	developed	 to	address	the	problems	of	building	 software	for	networked	consumer	
devices.	It	was	designed	 to	support	multiple	host	architectures	and	to	allow	secure	delivery	of	software	
components.	To	meet	these	requirements,	 compiled	code	had	to	survive	transport	across	networks,	 operate	on	any	
client,	and	assure	the	client	that	it	was	safe	to	run.”

Java®	Virtual	
Machine	
Specification

@spoole167

Important	parts
• The	Class	File	format

• Data	types:		ranges,		initial	conditions,	standards	to	follow
• (like	IEEE	Standard	for	Binary	Floating-Point	Arithmetic	(ANSI/IEEE	Std.	
754-1985,	New	York))	

• How	arrays	are	stored	
• How	ClassLoaderswork	

• The	JVM	Instruction	Set

• Bytecode	Verification
• How	the	JVM	get	started..

• 5.2	The	Java	Virtual	Machine	starts	up	by	creating	an	initial	class	or	
interface	using	the	bootstrap	class	loader	(§5.3.1).	The	Java	Virtual	
Machine	then	links	the	initial	class	or	interface,	initializes	it,	and	
invokes	the	public	static	method	void	main(String[]).	

Java®	Virtual	
Machine	
Specification

@spoole167

Java®	Virtual	
Machine	
Specification

Pop	quiz:
Which	of	these	are	not in	the	JVM	spec?

• How	the	Heap	works
• Size,	allocation,	deallocation,		garbage	collection

• How	objects	are	represented	in	memory
• How	the	JIT	works
• What	the	semantics	of	the	memory	model	are?
• What	references	(aka	pointers)	to	objects	look	like?
• How	finalisation works?
• What	the	threading	model	is?
• How	synchronization	behaves?
• How	reflection	works?

@spoole167

Java®	Virtual	
Machine	
Specification

Pop	quiz:
Which	of	these	are	not in	the	JVM	spec?

• How	the	Heap	works
• Size,	allocation,	deallocation,		garbage	collection

• How	objects	are	represented	in	memory
• How	the	JIT	works
• What	the	semantics	of	the	memory	model	are?
• What	references	(aka	pointers)	to	objects	look	like?
• How	finalisation works?
• What	the	threading	model	is?
• How	synchronization	behaves?
• How	reflection	works?

@spoole167

These	items	are	in	the	JLS

• What	the	semantics	of	the	memory	model	are
• What	the	threading	model	is
• How	synchronization	behaves
• How	finalisation should	work		(ish)

The	Java®	
Language	
Specification

@spoole167

Other	items	are	in	the	API	reference

• How	reflection	works
• How	the	Security	Manager	works

“See	the	specifications	of	the	Java	SE	Platform	class	libraries	
for	details.”

“The	Java	Virtual	Machine	must	provide	sufficient	support	for	
the	implementation	of	the	class	libraries	of	the	Java	SE	
Platform.	Some	of	the	classes	in	these	libraries	cannot	be	
implemented	without	the	cooperation	of	the	Java	Virtual	
Machine.”

@spoole167

?
These	items	are	not	covered	by	
specifications	or	API	docs

• How	the	Heap	works
• Size,	allocation,	deallocation,		garbage	collection

• How	objects	are	represented	in	memory
• How	the	JIT	works
• What	references	(aka	pointers)	to	objects	look	like?

“The	existence	of	a	precisely	defined	virtual	machine	and	object	
file	format	need	not	significantly	restrict	the	creativity	of	the	
implementor.	The	Java	Virtual	Machine	is	designed	to	support	
many	different	implementations,	providing	new	and	interesting	
solutions	while	retaining	compatibility	between	implementations”

@spoole167

Flexible	but	precise.
• Most	of	the	important	bits	about	JVM	
execution	are	flexible	in	implementation.

• You	can	drop	the	API	requirements	(though	
you	would	lose	the	official	coffee	cup	as	your	
implementation	could	not	pass	the	JCK)

• Or	even	drop	the	Java	Language	Specification	
requirements	altogether.		Classfiles are	still	
Classfiles.

• Or	add	other	JVM	related	specifications	

Hardware

Virtualization	Layer	(s)	and	Operating	Systems

Threading
Locking

Diagnostics
IO

Class	 Files	

Java	Runtime

Memory	
Management JIT

@spoole167

What	does	this	mean	for	scaling	Java?

@spoole167

JVMs	can	scale	from	the	very	smallest	to	the	
very	largest	devices	

Tiny	
winy

Ginormous	
humongous

@spoole167

Technically	the	major	division	is	whether	the	device	has	
a	complete	operating	system

Full	Operating	System

Partial	Operating	System

No		Operating	System

Tiny	
winy

Ginormous	
humongous

@spoole167

So	how	far	can	we	take		Java?

Tiny	
winy

Ginormous	
humongous

Full	Operating	System

Partial	Operating	System

No		Operating	System

@spoole167

On	the	small	side

@spoole167

Raspberry	PI	3	– smallest	Java	SE	device?

@spoole167
Raspberry	PI	Zero	– smallest	Java	SE	device?

@spoole167

Raspberry	Pi

• PI	3	runs		Arm	V8		Broadcom	BCM2837	64Bit	Quad	Core	running	at	
1.2GHz

• Zero	runs	1GHz	single-core	CPU	with	512MB	RAM
• Minimum	requirements	for	Java	is	130MB	RAM
• Lots	of	alternatives	to	the	PI

• Most	of	them	are	ARM	based	
• Wifi,	Bluetooth
• GPU

• Full	Operating	System
• Full	Java	SE	support

So	not	really	
that	small.

@spoole167

Lets	go	much	smaller

@spoole167

2010	Marketing	stats	
(from	Oracle)

• 1.1	billion	desktops	run	Java
• 930	million	Java	Runtime	Environment	
downloads	each	year

• 3	billion	mobile	phones	run	Java
• 31	times	more	Java	phones	ship	every	year	
than	Apple	and	Android	combined

• 100%	of	all	Blu-ray	Players	Run	Java
• 1.4	billion	Java	Cards	are	manufactured	
each	year.
http://www.oracle.com/us/corporate/press/173712

@spoole167

@spoole167 https://commons.wikimedia.org/wiki/File:Java_Ring.jpg

Java	Ring	
20	pounds	from	Ebay

@spoole167

There’s	this	thing	called	“Java	Card”

Ships	6	Billion	units	a		
year		(up	from	1.4	Billion	
in	2010)

@spoole167

Java	Card	for	when	you	have	no	operating	system

Tiny	
winy

Ginormous	
humongous

Full	Operating	System

Partial	Operating	System

No		Operating	System

@spoole167

Java	Card	for	when	you	have	no	operating	system

Tiny	
winy

Ginormous	
humongous

Full	Operating	System

Partial	Operating	System

No		
Operating	
System

@spoole167

The	‘card’	is	just	one	of	the	
delivery	mechanisms

• Think	super	constrained,		very	low	power	
environments	(or	even	no	power)

• Maybe	1MB	of	RAM	– though	can	be	as	low	as	
2KB

• A	complete	Java	ecosystem	running	for	the	
last	20	years	

• A	really	minimal	subset	of	Java	with	special	
additions	for	secure	devices

• https://javacardforum.com/

@spoole167

How	small	can	you	go?

On	the	card

Next	to	the	processor	(separate	IC)

In	the	processor

@spoole167

Wow	– Java	inside	a	chip

What’s	the	catch?

Java Card Virtual Machine spec
Java Card Runtime Environment spec
Java Card API specification

@spoole167

Java	Card	JVM

• The	JVM	is	always	on	– it	never	ends
• A	Java	SE	programmer	is	going	to	find	Java	Card	a	little	different

ü threads,		cloning,	longs,	doubles,
ü Many	of	the	usual	object	methods		
• Characters	or	Strings!
ü Keywords	like	native,	sync,	transient,	

volatile	etc

ü Available	types:		Boolan,	byte,	short,		(int
is	optional)

ü One	dimensional	arrays	
ü May	have	GC

@spoole167

Java	Card	JVM

• Becoming	a	major	IOT	edge	device	type
• Has	security	physically	built	in	
• Low	Power
• Small	cost

Writing	code	in	Java	
means	less	chance	of	
code	problems.

no	hand	crafting	
assembler	for	small	
devices	

Want	to	debug	a	Java	
Card	in	the	field?
Want	to	patch	6	million	
cards?

Java	offers	a	superior	
developer	experience	

@spoole167

Super	sizing	the	Java	SE	elephant

@spoole167

Various	views	of		what	to	scale	up

• Larger	heaps?
• More	threads?
• More	JVMs?

@spoole167

Large	Heaps

@spoole167

@spoole167

Large	Heaps -Xmx 1TB,	-Xmx 10TB		-Xmx 32TB

The	1st challenge	is	how	much	memory	your	system	can	
hold.

Then	how	much	the	OS	will	offer		to	a	process

Heaps	of	1	..	4	TBs	are	not	uncommon	

IBM	Z14		comes	with	up	to	32	TB	
Of	which	up	to	10TB	can	be	offered	to	a	JVM

Big	heaps	start	to	hit	JVM	implementation	restrictions…

@spoole167

Large	Heaps Heap	layouts	/	GC	work	to	minimize	object	movement	and	so	
tend	to	group	objects	to	suit
But	at	some	point	processor	caching	get	impacted	by	the	
constant	fetching	from	uncached pages
The	larger	the	heap	– the	more	likely	there	are	cache	misses

@spoole167

Large	Heaps
How	big	can	we	go?

The	JVM	design	does	not	restrict	the	size	

The	target	hardware		has	limits	on	pointer	sizes	(ie 64bit)

But	(in	this	case)	that		still	gives	a	range	of	16	Exabytes

1	Exabyte	is			1	000	000	TB		
or		31250	Z14	Mainframes

So	the	real	challenge	is	improving	how	we	utilise	the	
memory	by	designing	different	GC’s		and	improved	object	
locality.

@spoole167

More	threads	in	a	single	JVM?

@spoole167

During	development	we	
sometimes	see	how	many	
threads	we	can	create…

Current	high	score	

>	1000000	

Takes	hours!

Increasing	the	number	of	threads	isn’t	a	great	way	to	scale.	
Thread	switching	costs
More	threads	=	less	memory	for	the	heap
Synchronisationmeans	stopping		more	threads!	– and	that	takes	time.

@spoole167

More	concurrent	JVMs	on	a	single	machine?

@spoole167

Startup	Time		of	1000	Liberty	Servers	on		Z14

3.9

0.33

2.19

4.39

7

9.2

12.1

25.01

0

5

10

15

20

25

30

10	tWAS	Servers 10	Servers 100	Servers 200	Servers 300	Servers 400	Servers 500	Servers 1000	Servers

Ti
m
e	
in
	M

in
ut
es

Number	of	servers	
*	First	bar	shows	WAS traditioanl startup	 time

1000

@spoole167

How	else	can	we	scale	Java?

• Clusters?
• Cloud?

@spoole167

Clusters

Executor	
node

Executor	
node

Executor
node

Executor
node

Data	Analytics General	purpose

Executor	
node

Executor	
node

Executor	
node

Container

multiple	instances	

Program	&	data

Decomposed	problem

@spoole167

Clusters

Executor	
node

Executor	
node

Executor
node

Executor
node

Data	Analytics General	purpose

Executor	
node

Executor	
node

Executor	
node

Container

multiple	instances	

Program	&	data

Decomposed	problemWhere’s	Java?

@spoole167

Clusters

Executor	
node

Executor	
node

Executor
node

Executor
node

Data	Analytics General	purpose

Executor	
node

Executor	
node

Executor	
node

Container

multiple	instances	

Program	&	data

Decomposed	problemWhere’s	Java?

@spoole167

Not	much	we	can	do	to	help	scale.

• Clusters	help	scale	the	application	and/or	help	parallelize	it	

• Spark	clusters	of		8000+	nodes	are	known
• Kubernetes	officially	supports	up	to	5000	nodes

• But	there	are	different	economics	we	can	address	

@spoole167

Cloud
Faster,	cheaper,	easier,	better	…

@spoole167

Economics	rules

@spoole167

New	rules	of	the	game.

Compute	==	money

@spoole167

New	rules	of	the	game.

Compute	==	money

$	==	GB/hr

@spoole167

New	rules	of	the	game.

Compute	==	money

$	==	GB/hr

-Xmx:	$100

@spoole167

Cloud	isn’t	going	away:		in	fact	its	coming	to	you

@spoole167

Cloud	is	coming	to	a	data	center	near	you

https://github.com/IBM/deploy-ibm-cloud-private
git clone
vagrant	up

@spoole167

@spoole167

We	need	to	go	from Very	long	running,	efficient,	
monolithic	applications	
Willing	to	trade	startup	time	for	
throughput

in	it	for	the	long	haul

@spoole167

Short	lived,	container	based,	micro	
service	oriented,	instant-on,	always	
available,	cross	server,	polyglot	
services

Now	we	also	need

@spoole167

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Throughput

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Throughput

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Throughput

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Throughput

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Throughput

Throughput

We	need	all	of	these	models

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Cloud. Cloud	demands	smaller	footprints,	faster	startup	times

Its	about	retuning		the	JVM	to	do	things	a	little	differently.

Some	of	this	is	going	to	need	a	lot	of		re-engineering.

It’s	already	begun

java –jar ngrinder.jar

JVM Process Mem usage (MB)
Hotspot JDK 8 577

OpenJ9 JDK 8 359

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Cloud. And	even	better…

java –jar <your jar here>

https://adoptopenjdk.net

http://www.eclipse.org/openj9/

JVM Process Mem usage (MB)
Hotspot JDK 8 577

Hotspot JDK 9 340

OpenJ9 JDK 9 240

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Cloud.

This	is	all	good	stuff.

The	more	important	thing	is	more	about	what	your	
application	needs	to	do..

Unnecessary	baggage
(you	have	loads)

Java	applications	have	to	get	lighter.	

Java	9	modularity	will	help	but	you	have	to	consider	
footprint	across	the	board.

Choose	your	dependencies	wisely

Your	choice	of	OS	&	distribution	is	important.

The	aim	is	‘carry	on	only’		

Your	application	isn’t	going	on	a	long	trip

ht
tp
s:/
/w
w
w
.fl
ic
kr
.c
om
/p
ho
to
s/
ar
m
yd
re
20
08
/

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

The	future	starts	here…

?
Data	Analytics Machine	Learning

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

But	it’s	still	driven	by	economics $

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

The	new	problems	we	face	are	not	ones	humans	can	easily	
internalize,	visualize		or	even	compute

These	drivers	are	changing	the	face	of	computing	as	we	
know	it.	And	it’s	barely	started

• The	reality	of	data	analytics
• The	promise	of	AI

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

The	common	challenges

Effective	optimization
Visualisation of	complex	patterns
Extracting	meaning	from	enormous	amounts	of	data.

All	things	human	beings	are	poor	at	doing
And	so	are	current	computer	architectures

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Machine	Learning	etc

• Helps	us	find	reasonable	answers	to	questions.		
• No	guarantees	on	it	being	the	best	answer.	

Organize	a	group	of	people	at	a	table.
So	that	you	get	the	‘best’	conversation			

You	decide	what	
‘best’	means

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Two	or	three	people	- easy	

What	about	10?	- how	many	combinations	to	consider?

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Two	or	three	people	- easy	

What	about	10?	- how	many	combinations	to	consider?

Going	to	need	
some	help	here3628800	

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Two	or	three	people	- easy	

What	about	150?	

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

5713383956445854590478932865261054003189553
5786011264182548375833179829124845398393126
5744886753111453771078787468542041626662501
9868450446635594919592206657494259209573577
8929325357290444962472405416790722118445437
1222696755200000000000000000000000000000000
00000

Going	to	need	a	lot	of	help	here

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

It’s	this	level	of	scale	,	complexity	and	
uncertainly	we	now	have	to	deal	with…

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Imagine creating	systems	that	can

Tailor responses	to	the	personalities	of	your	
customers	without	meeting	a	single	one	of	
them.

improve	themselves	
over	time,	learning	
from	and	adapting	to	
the	world	around	
them.

identify	their	own	inefficiencies-and	address	them	
automatically-in	real	time.

Uncover	patterns,	resources,	trends	and	other	
competitive	advantages	invisible	to	competitors	and	
their	information	systems.

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION ht
tp
:/
/k
ar
pa
th
y.
gi
th
ub

.io
/2
01

5/
05

/2
1/
rn
n-
ef
fe
ct
iv
en

es
s/

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Machine	Learning	works	because	(mostly)	humans	
design	and	teach	it

A	ML	solution	can	be		a	significant	investment.
It	it	also	a	significant	business	opportunity

JVMs	need	to	be	able	to	offer	good	machine	
learning	and	data	analysis	capabilities

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Back	to	clusters

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Executor	
node

Executor	
node

Executor
node

Executor
node

CPU

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Executor	
node

Executor	
node

Executor
node

Executor
node

CPU

GPU

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Executor	
node

Executor	
node

Executor
node

Executor
node

CPU

GPU

FPGA

ASIC

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

GPU’s	don’t	work	like	CPU’s

They	want	their	data	in	different	forms
They	behave	differently

You’ll	have	to	think	differently	too

if(a) {
// do this

} else {
// do this instead

}
On	a	standard	CPU
Each	thread	runs	in	parallel
With	its	own	’program	counter’

Independently.
if(a) {

// do this
} else {

// do this instead
}

Step	1

Step	1

Step	2

Step	2

if(a) {
// do this

} else {
// do this instead

}

On	a	GPU
Each	thread	runs	in	sync	
sharing	a	program	counter

The	length	of	time	for	the	
program	to	complete	is	
a factor	of	all	the	
paths	traveled

GPU’s	are	best	when
data	driven!

if(a) {
// do this

} else {
// do this instead

}

Step	1

Step	1

Step	2

Step	3

Wait

Wait

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Numbers	of	GPUs	in	data	centers	are	growing
A	good	reason		why	JVM	developers	are	working	on	improved	native	code	interop	
http://openjdk.java.net/projects/panama/
And	things	like	value	types	 http://openjdk.java.net/jeps/169	

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Effective	native	interop	requires	the	JVM	to	be	
able	to	pass	in	data	in	the	form	that	the	native	
code	needs.		And	do	it	very	fast	(bye	bye	JNI).

old	layout	on	
heap

New	layout	
on	heap

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Here’s	where	everything	changes.

• Up	to	now	the	JVM	has	done	all	the	heavy	lifting	in	transforming	your	
model	of	an	application	into	the	real	thing.

Your	model Multiple	 real	applications	

JVM

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

From	now	on	– you	and	your	application	will	have	
to	change	as	well

GPUs	require	you	to	think	differently.

So	will	AI	and	Machine	Learning..

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Neural	nets	are	number	crunchers	– something	
GPU’s	are	fantastically	good	at.	

More	reasons	for	Value	Types	and	native	interop

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

What	comes	after	GPUs?

neuromorphic	processors	of	course

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

A program to develop a
neuromorphic processor that is a
new kind of cognitive computer

Designed to simulate the neurones
and dendrites of the brain for low
power efficient operation

Synapse:	 TrueNorth chips	have	a	million	computer	‘neurons’	that	work	in	
parallel	across	256	million	inter-neuron	connections

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Event	driven,	Non	Von	Neumann	Neural	Network.

Neural	Nets	want	their	data	in	different	forms

They	behave	differently

You’ll	have	to	think	differently

Your	applications	are	going	to		change	

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

And	beyond?

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Wrap	up

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Machine	Learning	works	because	(mostly)	humans	
design	and	teach	it

A	ML	solution	can	be		a	significant	investment.
It	it	also	a	significant	business	opportunity

That	has		implications…

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

1 Lots	of	“BlackBox”	services	and	APIs	that	allow	the	owner	to	
keep	their	“secret	source”	secret

2 Investment	in	the	solution	is	sticky	- it’s	hard	to	create	so	
moving	to	a	new	runtime	is	less	likely

3 Developers	will	spend	more	time	consuming	services	into	
their	own	applications	and	less	on	bespoke	solutions

4 Developers	will	be	creating	new	forms	of	applications	around	
data	analytics	and	machine	learning

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Which	means

1	JVMs	need	to	be	able	to	offer	good	machine	learning	and	data	
analysis	capabilities

2	Java	Developers	will	spend	more	time	in	transforming	data	and	
thinking	about	problems	in	data	terms

3 Java	Developers	will	be	learning	new	technologies	and	tools

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167
Is	to	innovate	faster	– or	loose	to	the	competition

The	immediate	challenge	for	Java	and	the	JVM

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

predictable	
consistent	cadence	

easier	migration increased	innovation

Now	you	can	see	why	our	ecosystem	is	
repositioning	for	a	faster	pace

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Every	development	
team	has	both	
common	and	unique	
problems	to	solve.

Open	source	is	key	
to	fast	innovation	
and	adoption

OpenJDK
Eclipse	OpenJ9
Open	Liberty
Eclipse	MicroProfile
Java	EE
IBM	Cloud
Docker
Kubernetes

Allowing		everyone	to	participate
(and	offering	multiple	starting	points)

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

lambda
streams

modules
reactive	streams

panama
valhalla
penrose
amber

Giving	Java	innovation	a faster	cadence

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Tomcat
Glassfish
Open	Liberty
…

OpenJDK +	Hotspot

OpenJDK +	OpenJ9

J2EE

Micro-profile

And	a	variety	of	implementations	to	choose	from

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

Container	
awareness
Fast	native	code
interop

Re-optimised JITs
Re-tuned	GC’s
AOT
Value	Objects

Generating	New	JVM	
technologies	

Jit	As	A	Service
<your	idea	here>

@spoole167

Java	Vendor	competition		and collaboration	delivered

• The	fastest	runtime	environments
• The	most	scalable	runtime	environments
• The	best garbage	collectors	
• The	greatest dynamically	re-optimizing	compilers

• And	we’re	still	doing	it.

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION @spoole167

Java	is	going	places	it’s	never	been	before.

The	JVM	is	rising	to	the	challenge	– are	you?

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

