

Models in Minutes not Months: Data Science as Microservices

Sarah Aerni, PhD

Einstein Platform

saerni@salesforce.com

@itweetsarah

LIVE DEMO

Agenda

BUILDING AI APPS: Perspective Of A Data Scientist

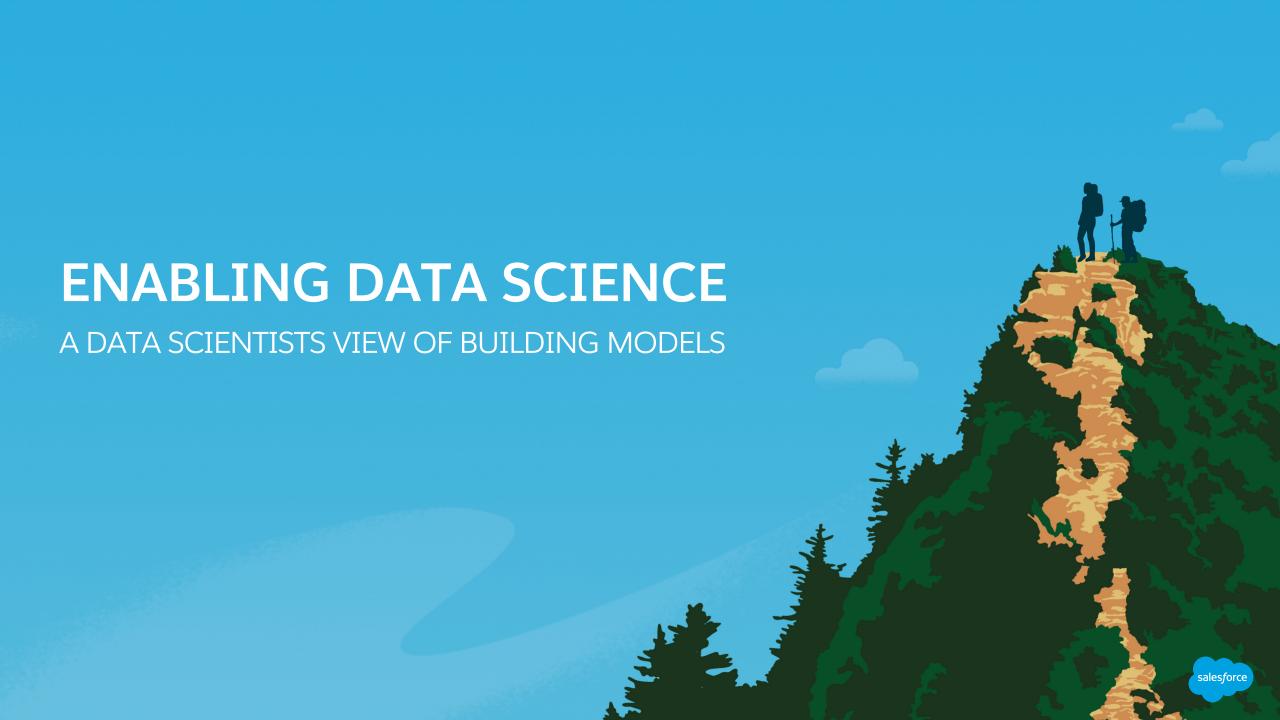
- Journey to building your first model
- Barriers to production along the way

DEPLOYING MODELS IN PRODUCTION: Built For Reuse

- Where engineering and applications meet AI
- DevOps in Data Science monitoring, alerting and iterating

AUTO MACHINE LEARNING: Machine Learning Pipelines as a Collection of Microservices

- Create reusable ML pipeline code for multiple applications customers
- Data Scientists focus on exploration, validation and adding new apps and models



Engineer Features and Build Models

Interpret Model
Results and
Accuracy

A data scientist's view of the journey to building models

Engineer Features and Build Models

> Interpret Model Results and Accuracy

A data scientist's view of the journey to building models

Data Engineers: Access to data

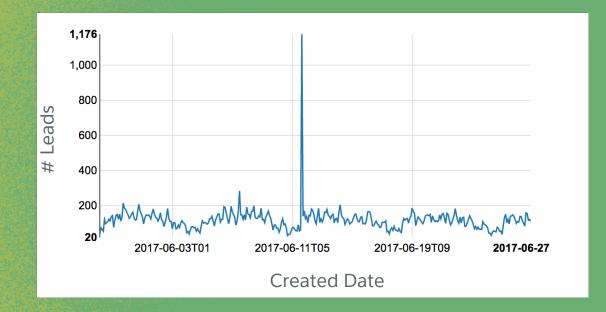
IT: Environment and tools

Domain Experts: Context and input at

each step

Engineer
Features and
Build Models





Engineer Features and Build Models

Engineer Features

Empty fields

One-hot encoding (pivoting)

Email domain of a user

Business titles of a user

Historical spend

Email-Company Name Similarity

Engineer Features and Build Models

```
>>> from sklearn import svm
```

>>> from numpy import loadtxt as I, random as r

>>> pls = numpy.loadtxt("leadFeatures.data", delimiter=",")

>>> testSet = r.choice(len(pls), int(len(pls)*.7), replace=False)

>>> X, y = pls[-testSet,:-1], pls[-testSet:,-1]

>>> clf = svm.SVC()

>>> clf.fit(X,y)

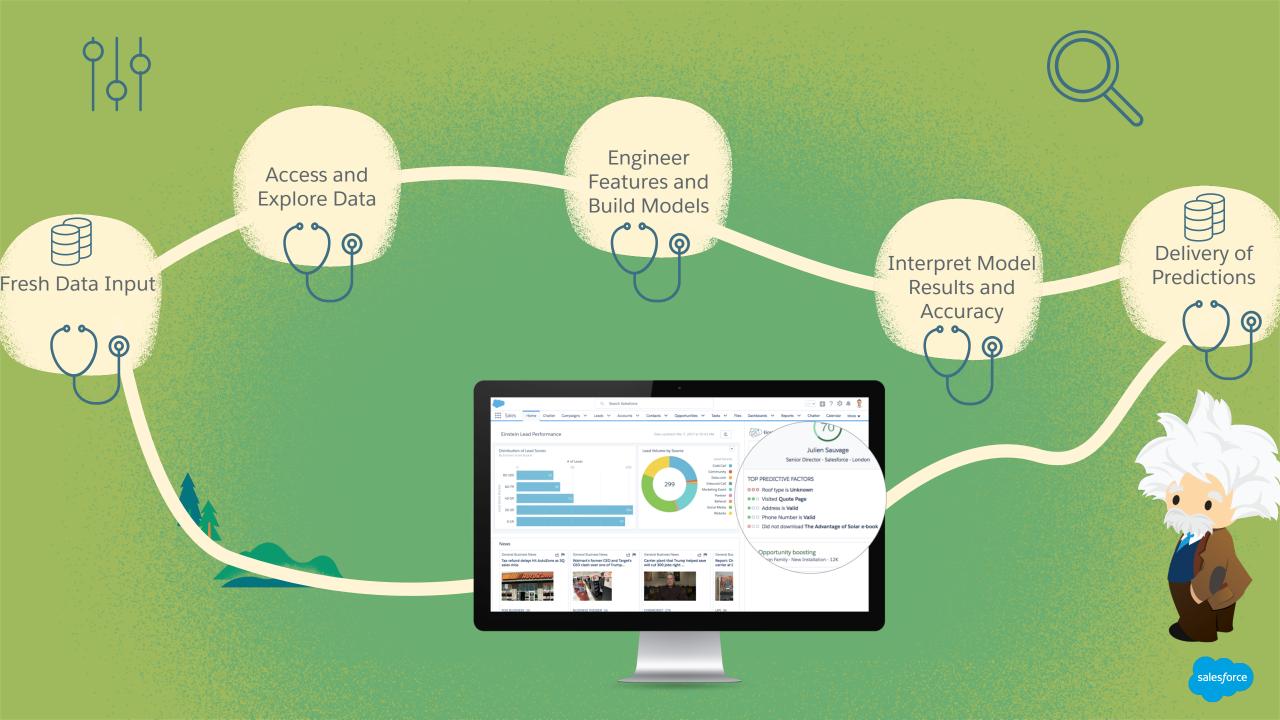
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, tol=0.001, verbose=False)

>>> clf.score(pls[testSet,:-1],pls[testSet,-1])

0.88571428571428568

Engineer Access and Features and **Explore Data Build Models** classification correctly classified 1000 total cases Leads Geographies

Engineer Features and Build Models



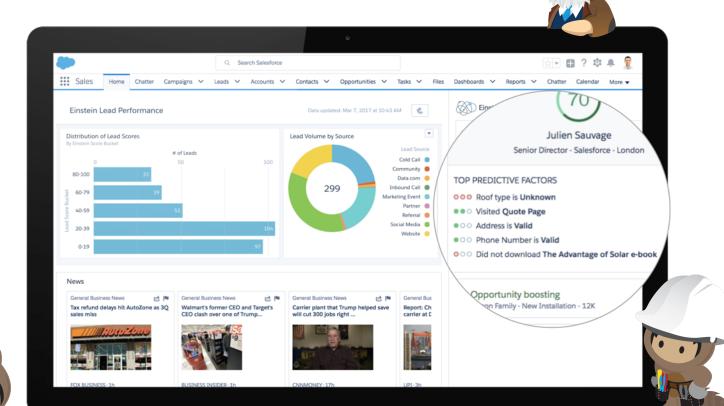
Bringing a Model to Production Requires a Team

Applications deliver predictions for customer consumption

Predictions are produced by the models live in production

Pipelines deliver the data for modeling and scoring at an appropriate latency

Monitoring systems allow us to check the health of the models, data, pipelines and app



Bringing a Model to Production Requires a Team

Data Scientists

Continue evaluating models

Monitor for anomalies and degradation

Iteratively improve models in production

Front-End Developers

Build customer-facing UI

Application instrumentation and logging

Product Managers

Gather requirements & feedback

Provide business context

Data Engineers

Provide data access and management capabilities for data scientists

Set up and monitor data pipelines

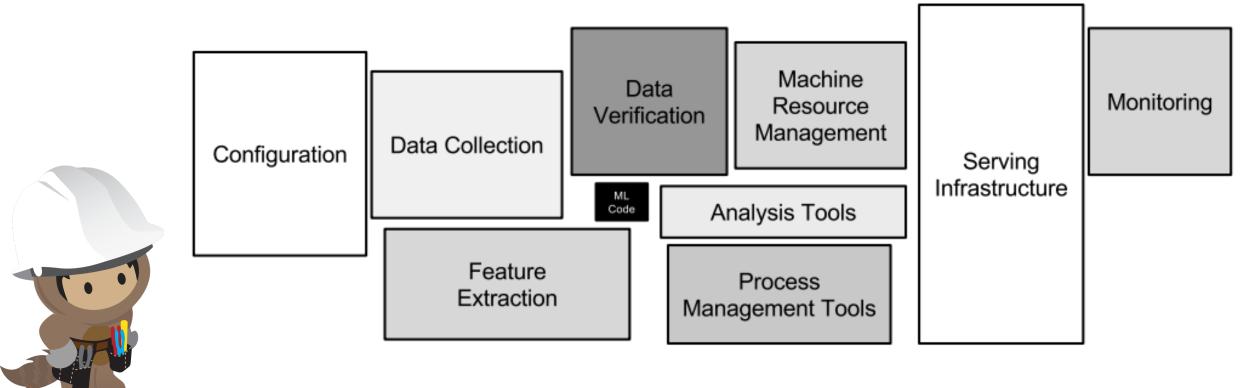
Improve performance of data processing pipelines

Platform Engineers

Machine resource management

Alerting and monitoring

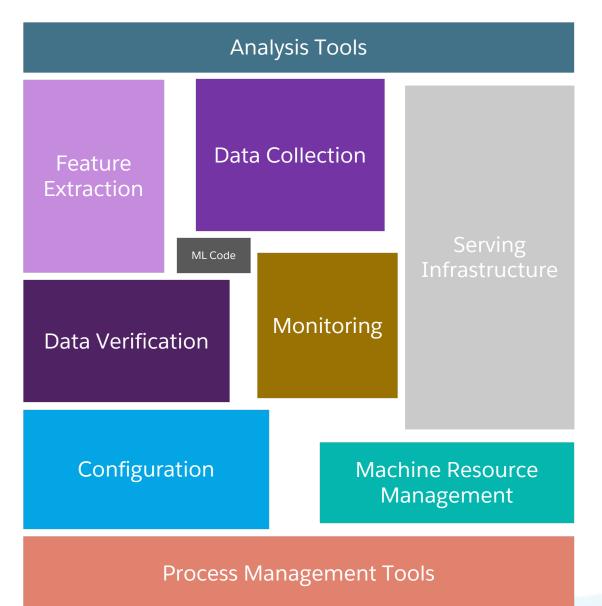
Supporting a Model in Production is Complex



Only a small fraction of real-world ML systems is a composed of ML code, as shown by the small black box in the middle. The required surrounding infrastructure is fast and complex.

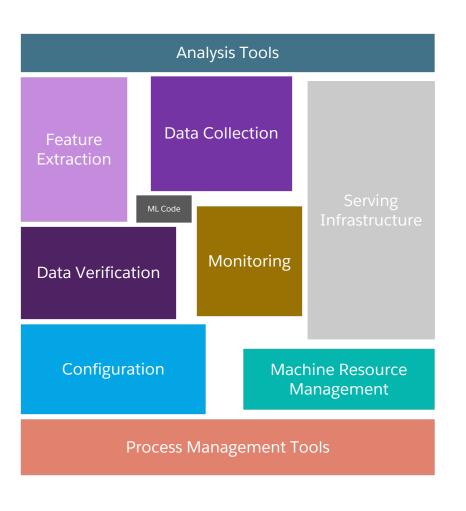
D. Sculley, et al. Hidden technical debt in machine learning systems. In Neural Information Processing Systems (NIPS). 2015

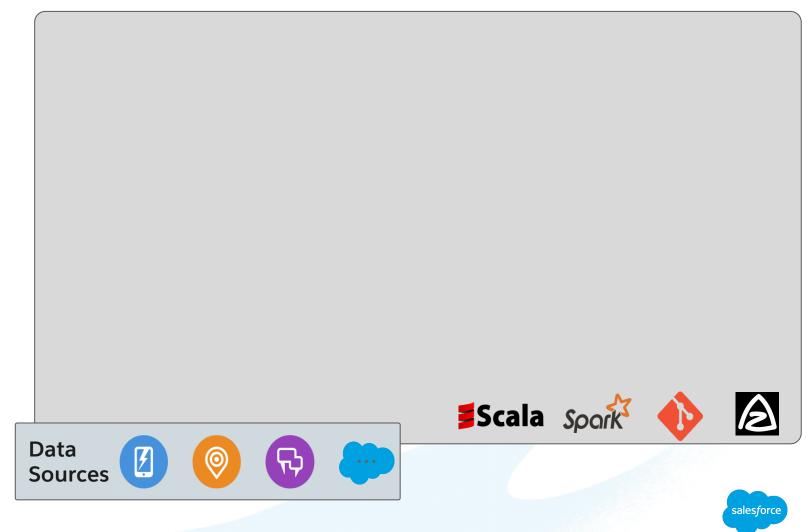
Supporting Models in Production is Mostly NOT AI

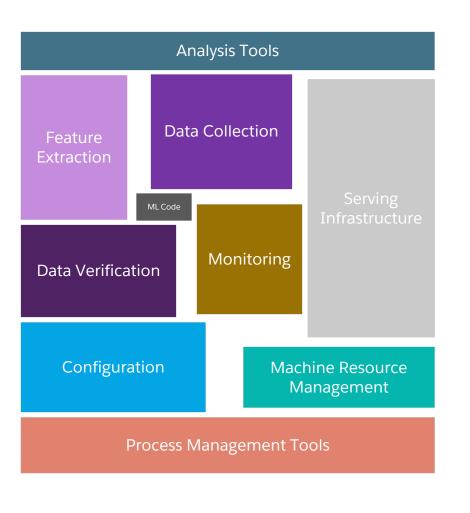


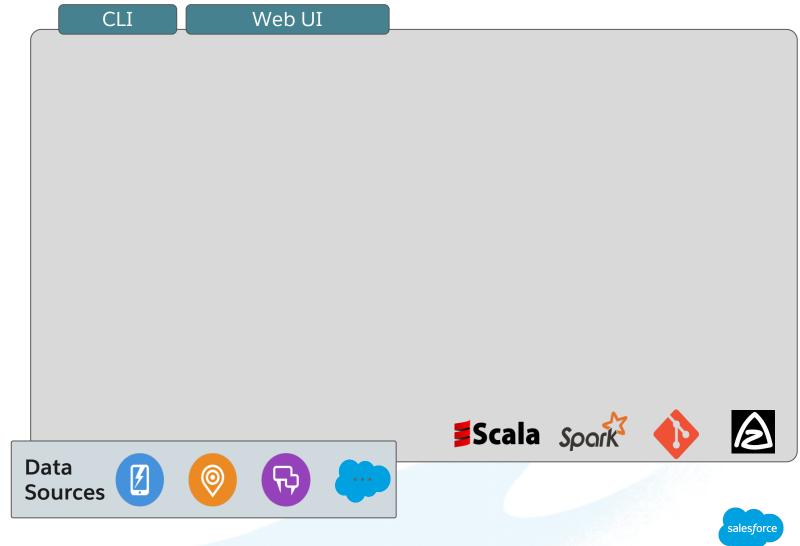
Only a small fraction of real-world ML systems is a composed of ML code, as shown by the small black box in the middle. The required surrounding infrastructure is fast and complex.

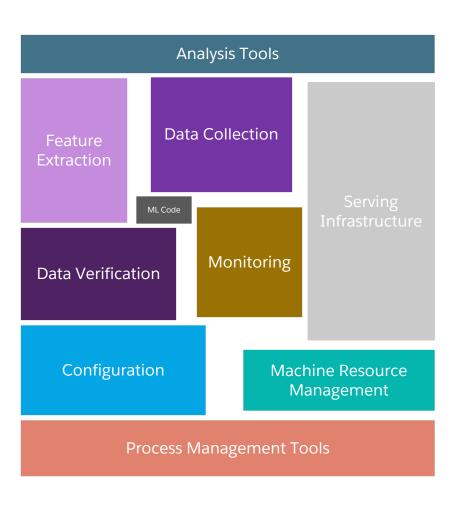
Adapted from D. Sculley, et al. Hidden technical debt in machine learning systems. In Neural Information Processing Systems (NIPS). 2015

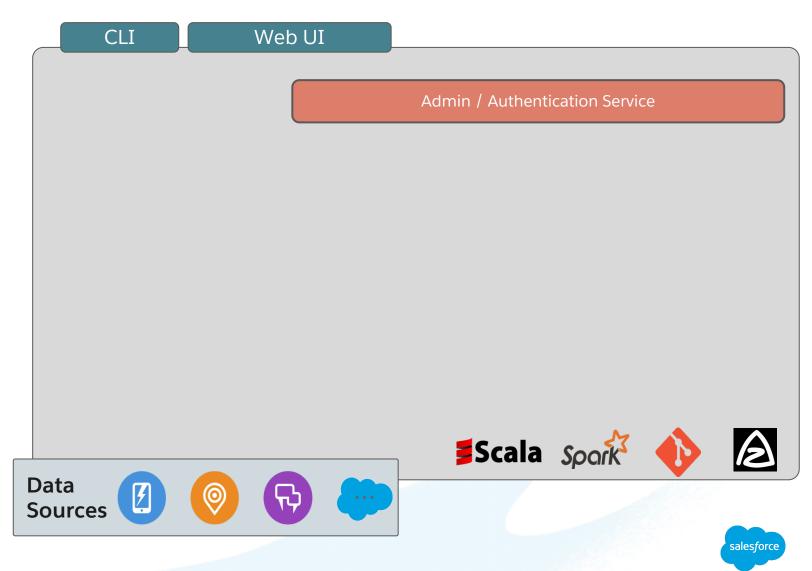


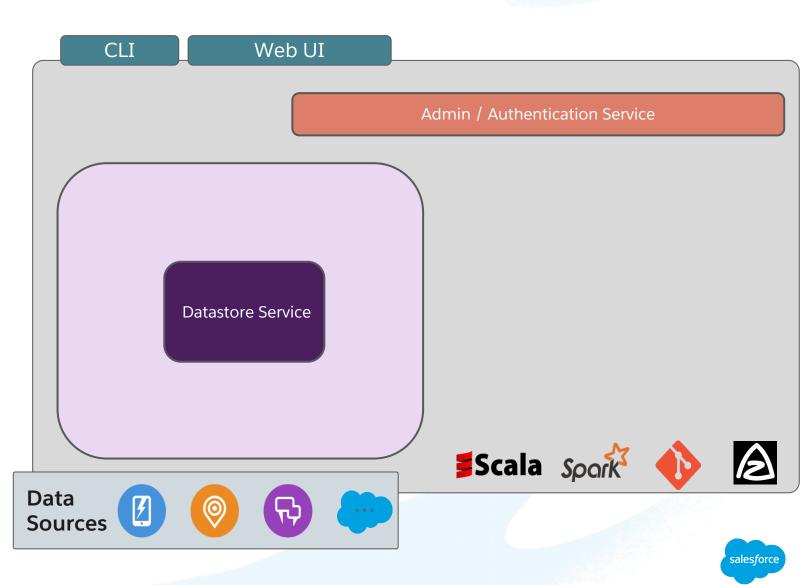




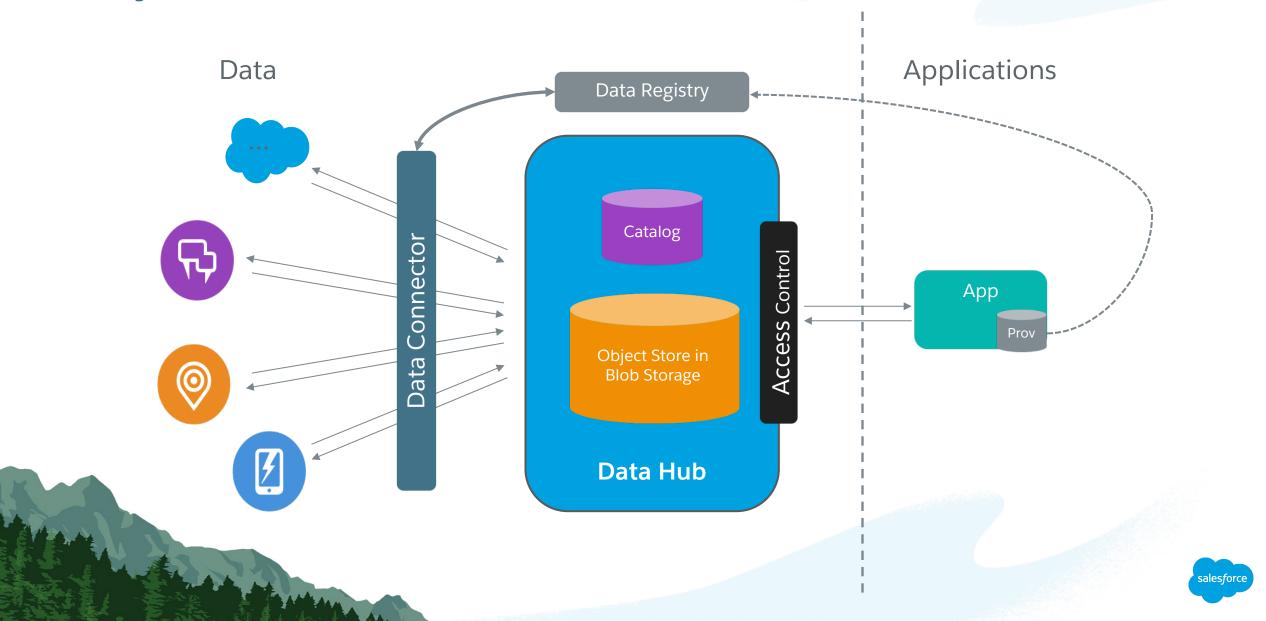


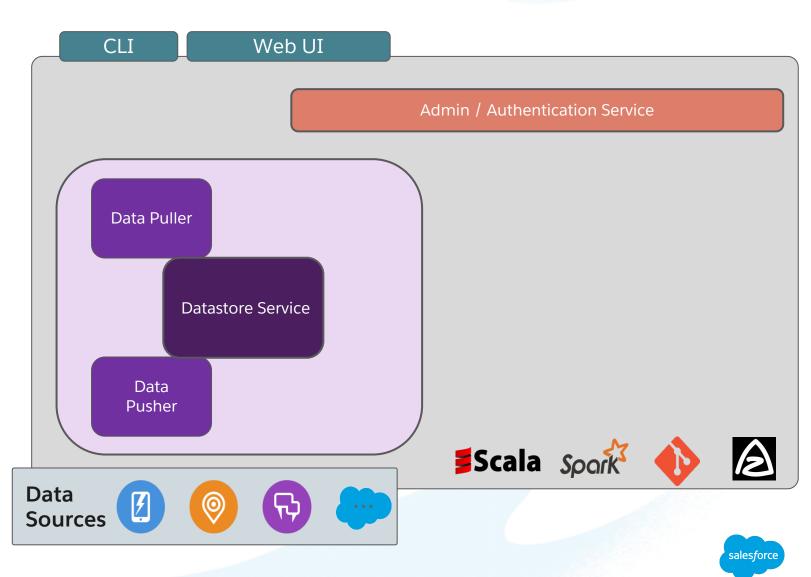


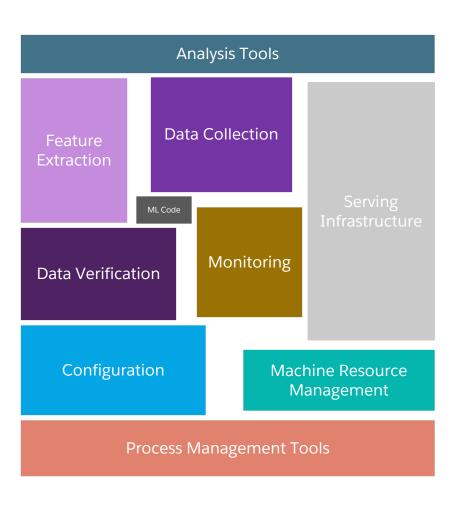


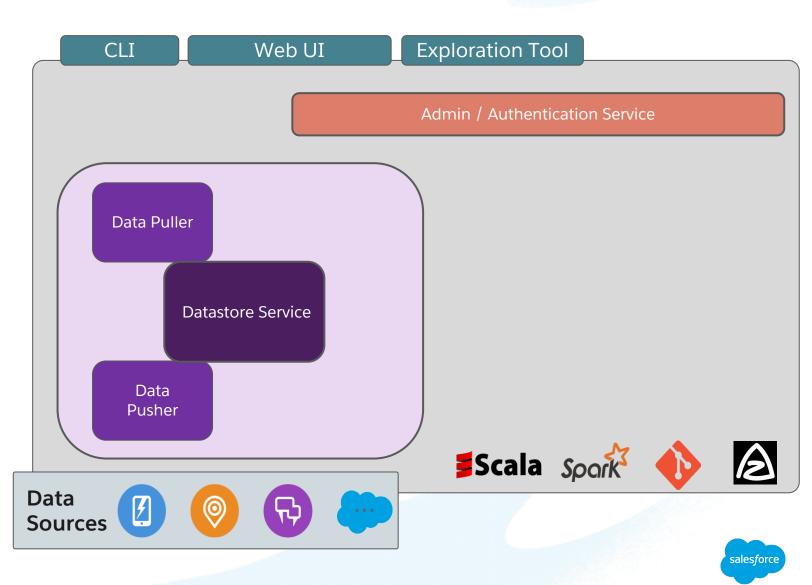


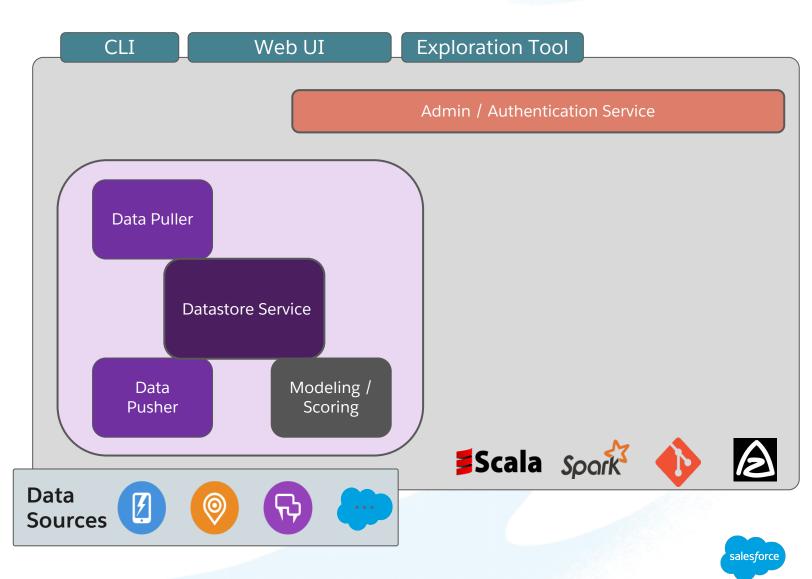
Why Data Services are Critical



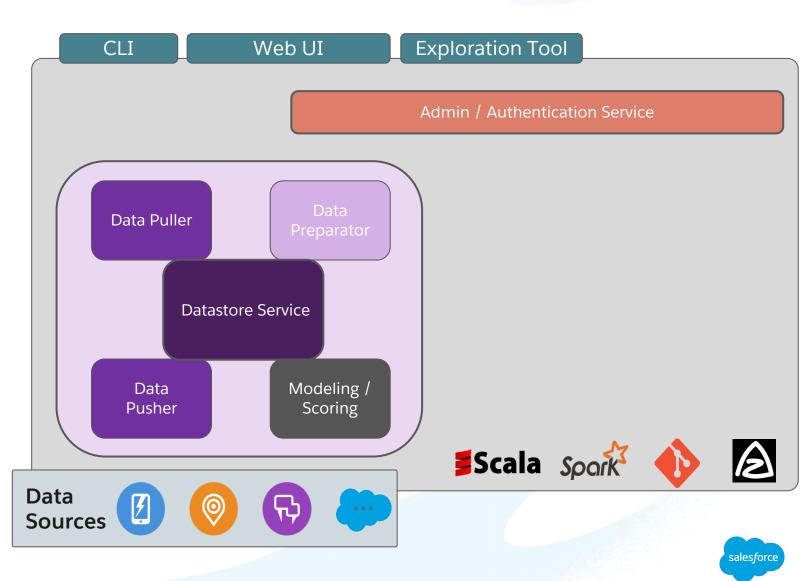


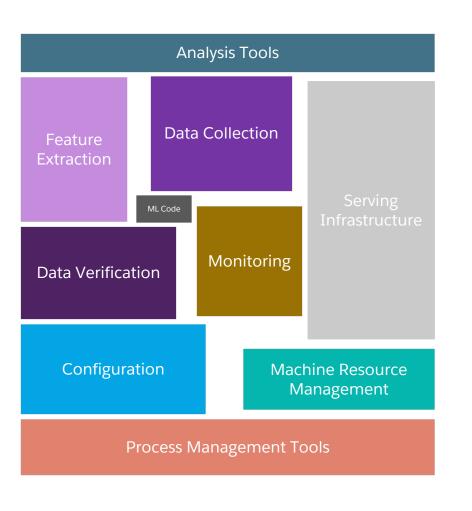


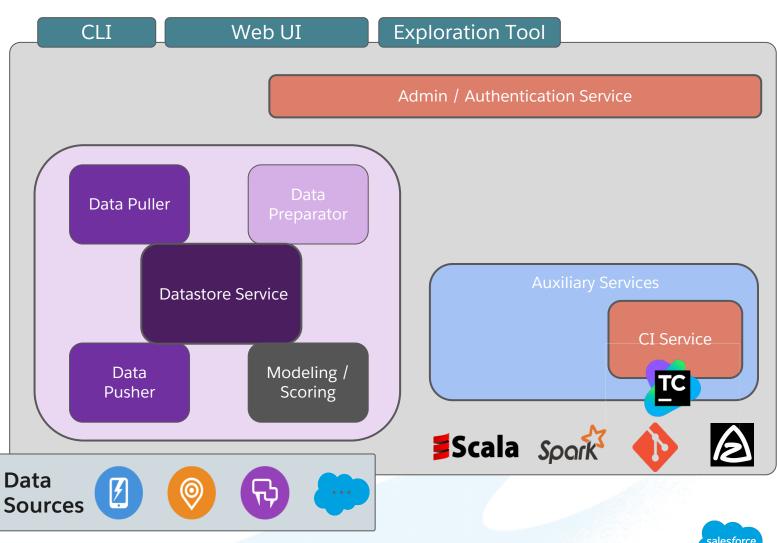


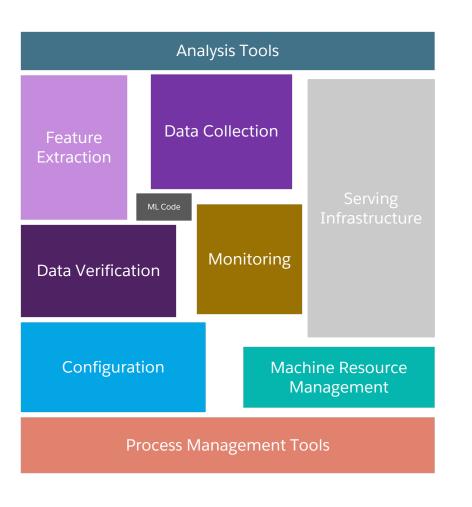


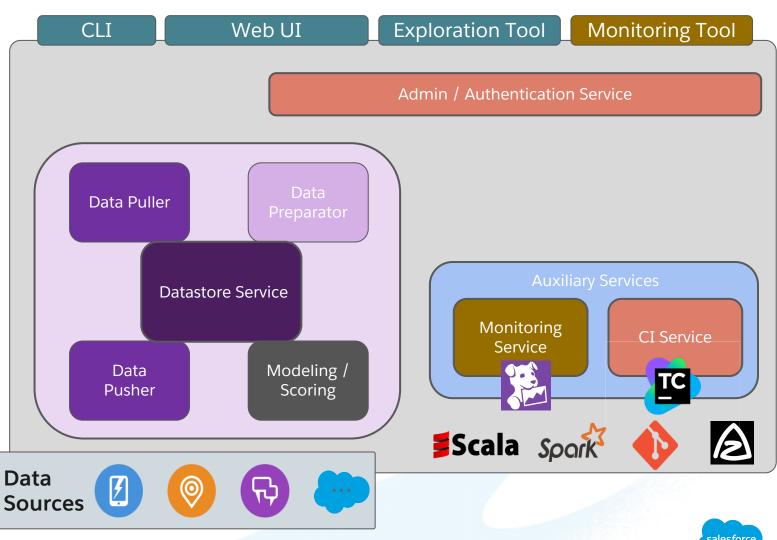






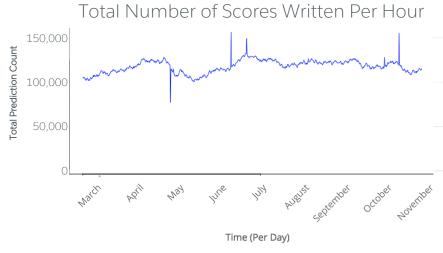


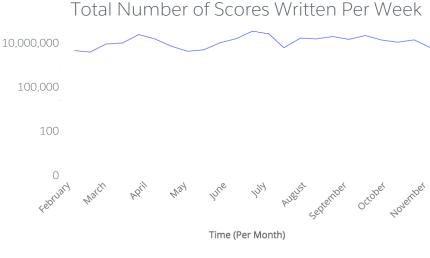




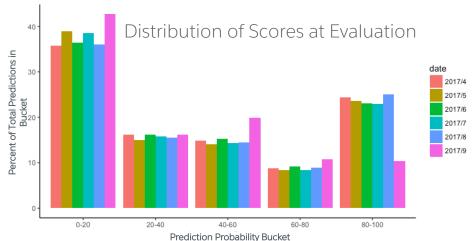
Monitoring your AI's health like any other app

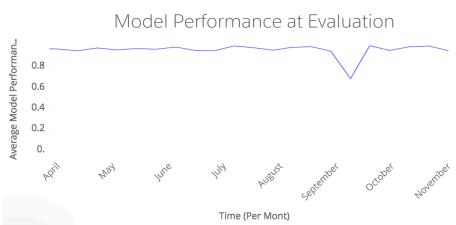
Pipelines, Model Performance, Scores - Invest your time where it is needed!

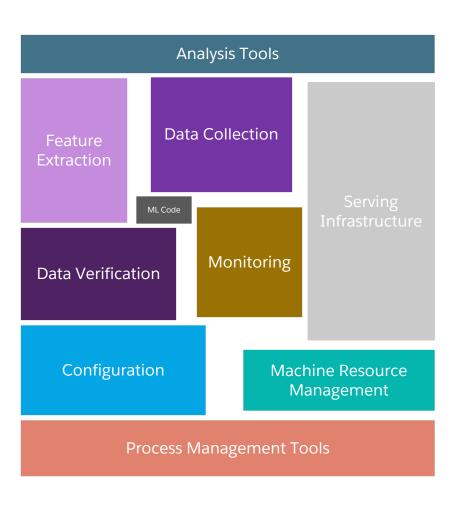


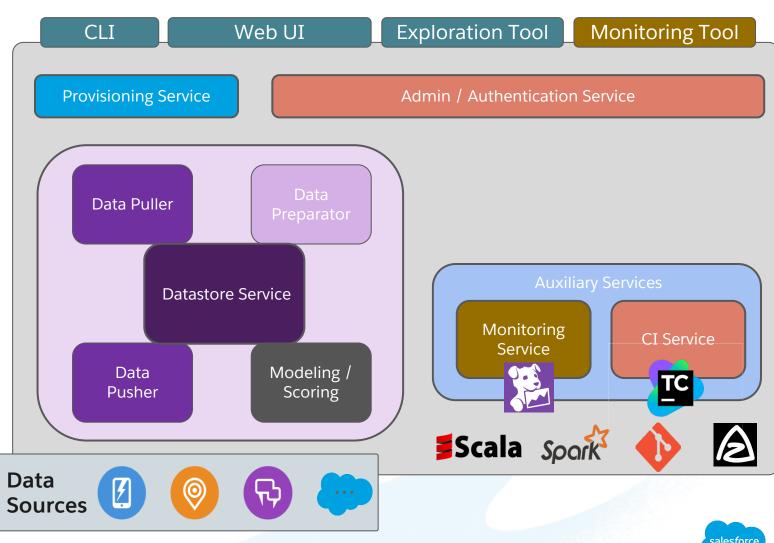


0.86 Evaluation auROC

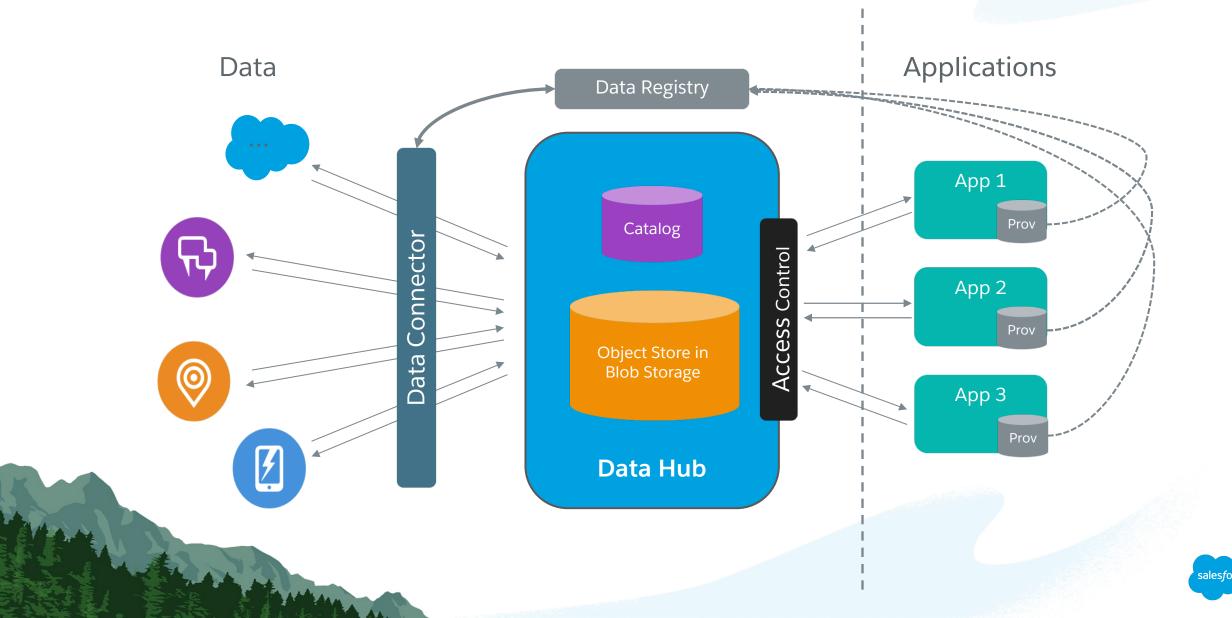


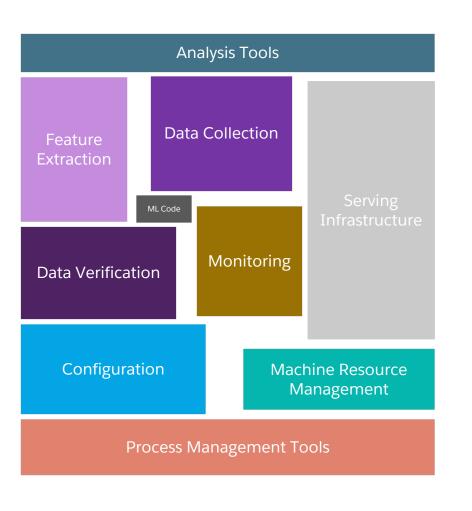


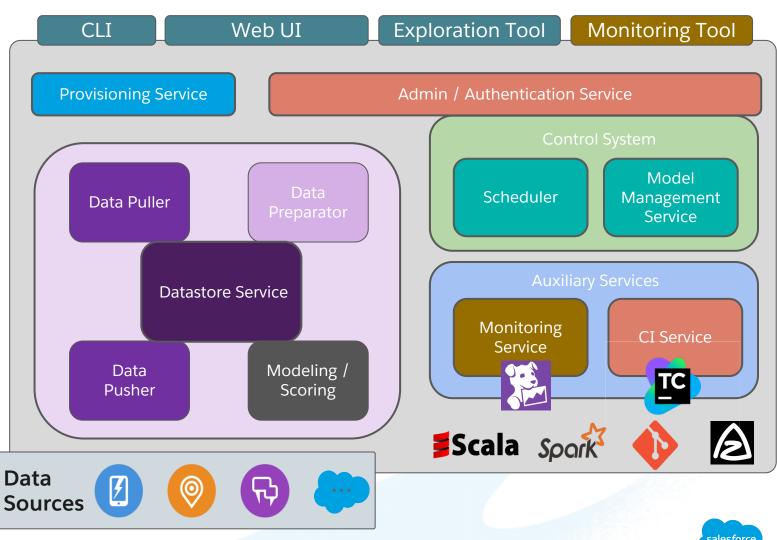




Why Data Services are Critical







Deploy, monitor and iterate on models in one location

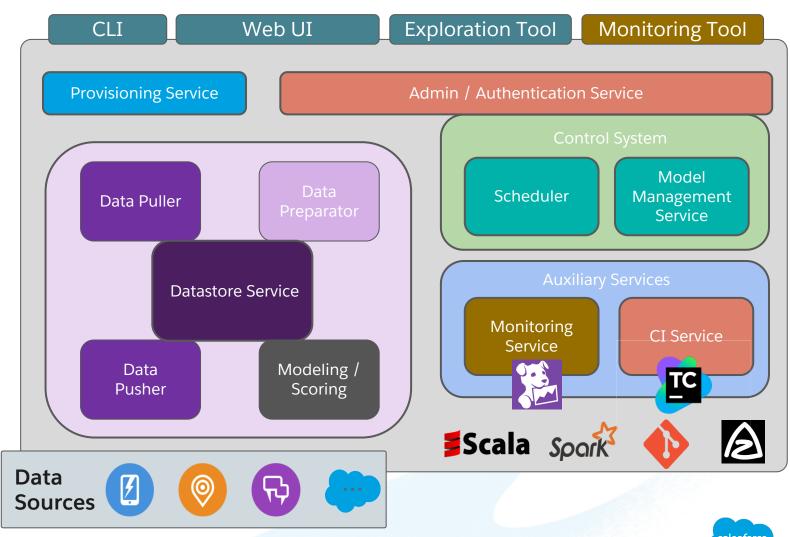
Microservice architecture

Customizable model-evaluation & monitoring dashboards

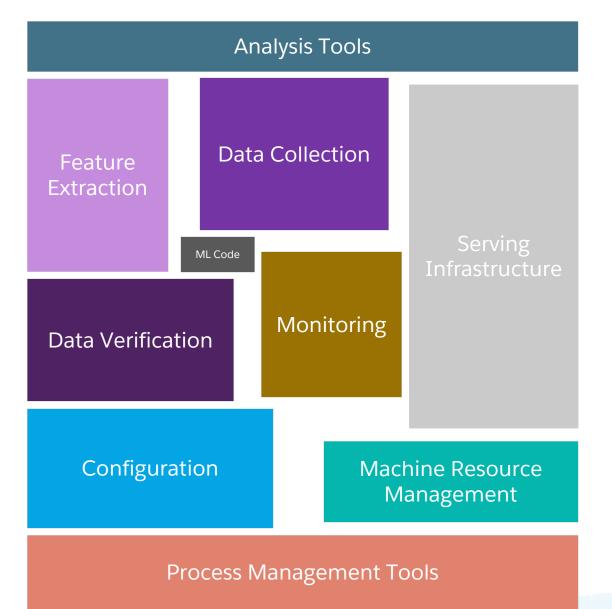
Scheduling and workflow management

In-platform secured experimentation and exploration

Data Scientists focus their efforts on modeling and evaluating results



Why Stop at Microservices for Supporting Your ML Code?



Why stop here?

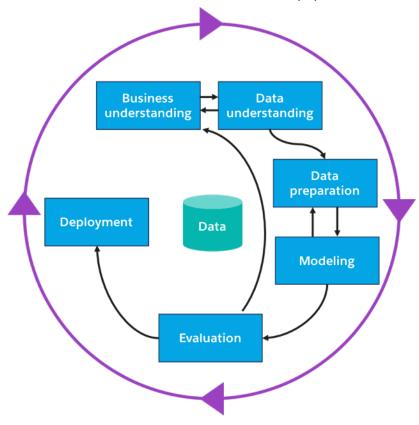
Your ML code can also be just a collection of microservices!

Auto Machine Learning

Building reusable ML code

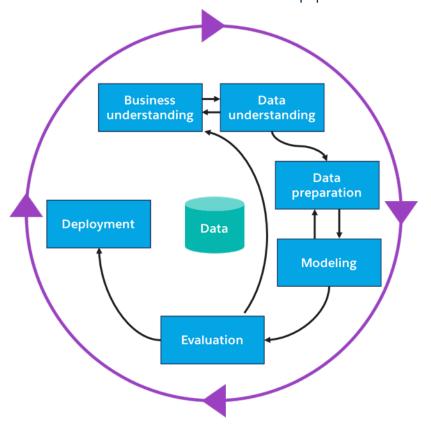
Leveraging Platform Services to Easily Deploy 1000s of Apps

Data Scientists on App #1

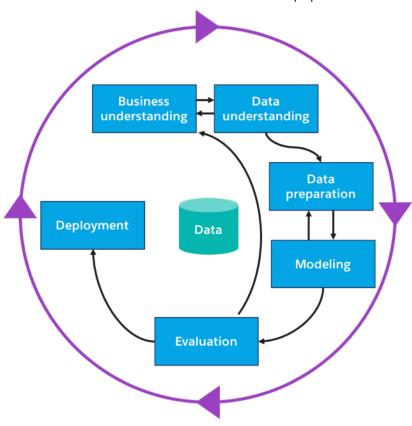


Leveraging Platform Services to Easily Deploy 1000s of Apps

Data Scientists on App #1

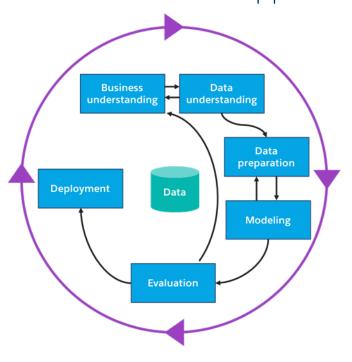


Data Scientists on App #2

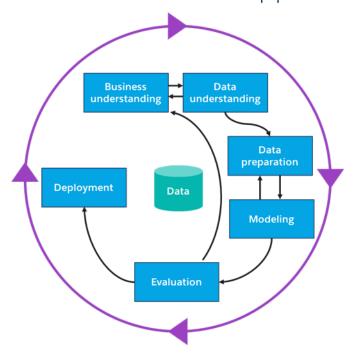


Let's Add a Third App

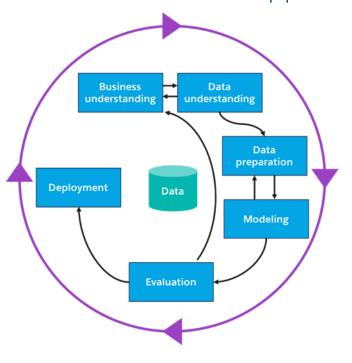
Data Scientists on App #1



Data Scientists on App #2

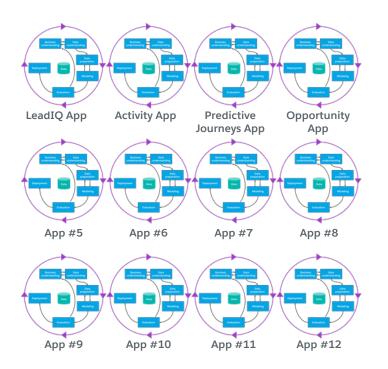


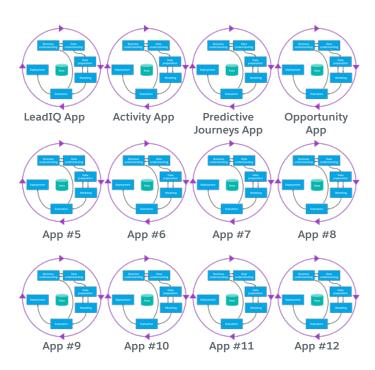
Data Scientists on App #3

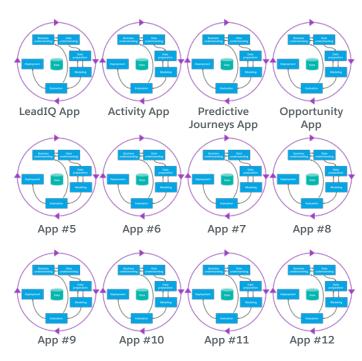


How This Process Would Look in Salesforce

hulu







150,000 customers

Einstein's New Approach to AI

Democratizing AI for Everyone

Classical Approach

Data Sampling Feature Selection Model Selection Score Calibration Integrate to Application Artificial Intelligence

Einstein Auto-ML AI for CRM

Discover
Predict
Recommend
Automate

Data already prepped

Models automatically built

Predictions delivered in context

AutoML for feature engineering

Categori	ical \	Variables
NAME	~	TITLE
Jim Steele		Senior VP
John Gardner		Senior VP
Andy Smith		Vice President
Test User		Vice President
Test User		CEO
Test User		Vice President
Test User		Chairperson
Test User		CEO

Text Fields
DESCRIPTION
A blessing in disguise
Time flies when you're having fun
Alles hat ein Ende, nur die Wurst hat zwei
um den heißen Brei herumreden
We'll cross that bridge when we come to it
You can say that again
Your guess is as good as mine

Numerical Buckets

AutoML for feature engineering

Catego	rical	\/ariak	
Calego	лисан	varial	JIES

NAME	✓ TITLE	Senior VP	CEO	Vice President
Jim Steele	Senior VP	1	0	0
John Gardner	Senior VP	1	0	0
Andy Smith	Vice President	0	Ο	1
Test User	Vice President	0	O	1
Test User	CEO	0	1	0
Test User	Vice President	0	0	1
Test User	Chairperson	0	0	0
Test User	CEO	0	1	0

AutoML for feature engineering

Text Fields

DESCRIPTION	Word Count	Word Count (no stop words)	Is English	Sentiment
A blessing in disguise	4	2	1	1
Time flies when you're having fun	6	3	1	1
Alles hat ein Ende, nur die Wurst hat zwei	9	4	0	0
um den heißen Brei herumreden	6	4	0	-1
We'll cross that bridge when we come to it	7	3	1	0
You can say that again	5	1	1	0
Your guess is as good as mine	7	3	1	0

AutoML for feature engineering

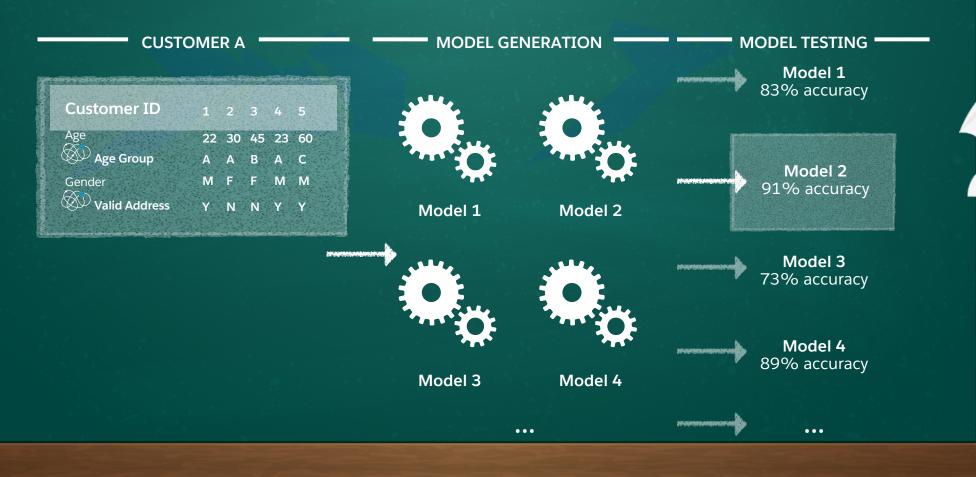
Numerical Buckets		
number of	->	employee
employees		bucket
90	->	10-99
16	->	10-99
224	->	100-499
192	->	100-499
335	->	100-499
12	->	10-99
621	->	500-1000
72	->	10-99
560	->	500-1000
80	->	10-99
24	->	10-99
0	->	0-9
208	->	100-499

What Now? How autoML can choose your model

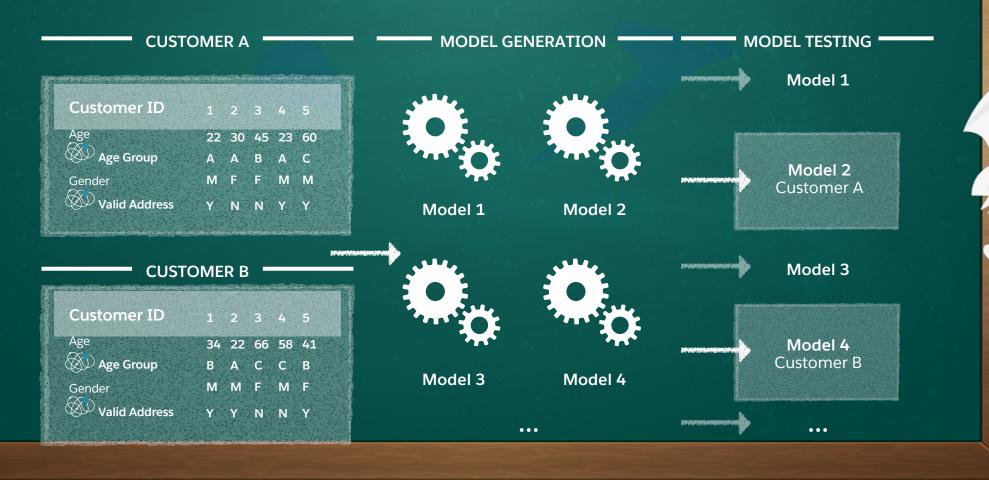
```
>>> from sklearn import svm
>>> from numpy import loadtxt as I, random as r
                                                                  Should we try other model forms?
>>> clf = svm.SVC()
                                                                  Features?
>>> pls = numpy.loadtxt("leadFeatures.data", delimiter=",")
                                                                  Kernels or hyperparameters?
>>> testSet = r.choice(len(pls), int(len(pls)*.7), reptace=False)
>>> X, y = pls[-testSet,:-1], pls[-testSet:,-1]
>>> clf.fit(X,y)
SVC(C=1.0, cache_size=200, class_weight=None,
       coef0=0.0, decision_function_shape=None, degree=3,
                                                                   Each use case will have its own
       gamma='auto', kernel='rbf', max_iter=-1,
                                                                   model and features to use. We
       probability=False, random_state=None, shrinking=True,
                                                                   enable building separate models
       tol=0.001, verbose=False)
                                                                   and features with 1 code base
>>> clf.score(pls[testSet,:-1],pls[testSet,-1])
                                                                   using OP
0.88571428571428568
```

salesforce

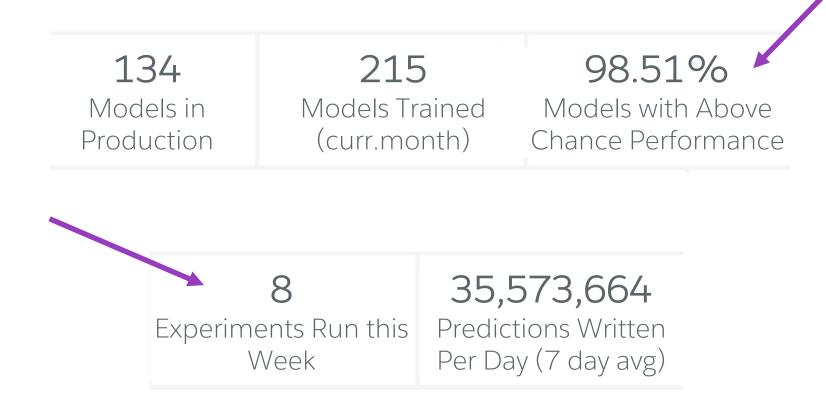
A tournament of models!



A tournament of models!

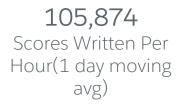


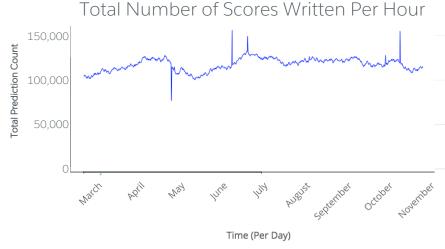
Deploy Monitors, Monitor, Repeat!

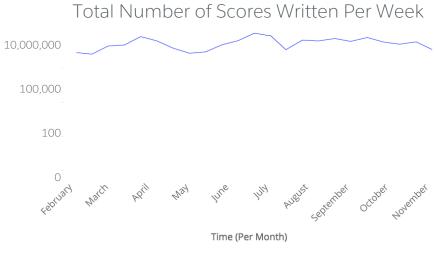


Deploy Monitors, Monitor, Repeat!

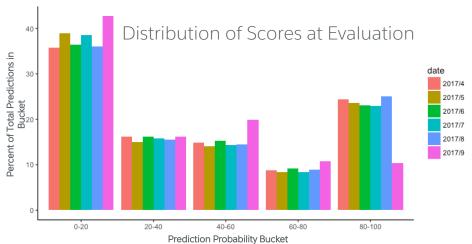
Pipelines, Model Performance, Scores - Invest your time where it is needed!

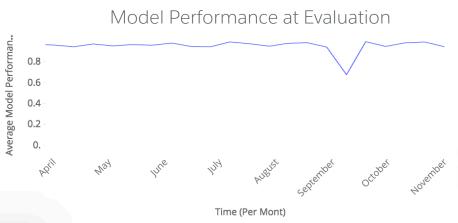






0.86 Evaluation auROC





Deploy Monitors, Monitor, Repeat!

Key Takeaways

- Deploying machine learning in production is hard
- Platforms are critical for enabling data scientist productivity
 - Plan for multiple apps... always
 - To ensure enabling rapid identification of areas of improvement and efficacy of new approaches provide
 - Monitoring services
 - Experimentation frameworks
- Identify opportunities for reusability in all aspects, even your machine learning pipelines
- · Help simplify the process of experimenting, deploying, and iterating

