
Disrupting the Banking
Experience: Building a

Mobile-only Bank

Yann Del Rey
Teresa Ng

Easy on-boarding

Zero Fees

Instant Notifications

Public API - Open to all third party developers

Starling Marketplace

A marketplace for the best
products, solving money
problems

Insurance

FX

Connectivity

Where I spend

Mortgages

Other current
accounts

Loans

Investment

Starling Marketplace

Founded by Anne Boden 20142014
November: Early technical prototyping2015
January: Starling raises $70M, started building the bank2016
July: PRA grants Starling its bank

October: Testing Mastercard debit

November: Alpha testing consumer app

December: Processing direct debits

January: Starling becomes the 13th member to join Faster Payments2017
February: Launched Beta testing program

April: First ever Open Banking Hackathon

May: Public App Store launch

Summer: Apple & Google Pay, Spending Insights, Saving Goals

How we work

How we work

We have tried different variations:
• Feature teams
• Component teams

Team structure example

•The team:
•All the mobile developers
•Couple platform developers

•Experts:
•Product managers
•Designers

Our team structure

iOS Android Back end Product
managers

Designers

How do we decide who has to work on what?

Flow:
• Kanban board

• Product managers prioritise new work

• We as developers do our prioritisation

• Whoever is free and wants to work on it

How do we define the requirements?

•Whoever picked the feature, will help defining the feature

•Meetings are banned

•Communication is key

•starlingdevs.slack.com

Allows us to innovate

Our app architecture

Our app architecture

•Every design pattern has pros and cons

•Picking one depends on the context

•Iteration is key

MVC

•Pros: Good to quickly develop features, everyone knows
it

•Cons: Doesn’t work well for a big codebase
- Massive view controllers
- Not maintainable
- Hard to test
- Hard to reuse components

MVC with closures

Goal: Decrease view controllers size by decoupling the logic

•Pros: reduces each component responsibilities

•Cons: Still based on the MVC model
- Doesn’t solve our problem on the long term
- Closures are difficult to track

VIPER

View Presenter Interactor

Entity

Entity

Router

VIPER

Goal: Isolate each component into smaller pieces

•Pros: SOLID principles, easy to test, good for a large team

•Cons:
- Lots of files
- Boilerplate code
- Protocols everywhere
- Very difficult to iterate

VIPER with RxSwift

Goal: Reduce the number of files and boilerplate code

•What is RxSwift

•Remove protocols between interactor and presenter

Stores

Goal: Add reusability and decrease number of files

•Replace interactors by stores

•What is a Store

•Extract and centralise the network and data layers

View configuration

Goal: Increase readability and decrease boilerplate code

•What is a View configuration

•Clear representation of a view

•Remove Presenter - ViewController protocols

•Easy to test and reuse

View configuration example

View configuration example

Proof of address

View configuration example

View configuration example

What does it look like

Router Presenter

Stores

ViewControllers

View Configs
+

RxSwift
Protocols

Protocols
+

RxSwift

What does it look like

Testing

Oct 2016  
First commit to
the Android repo

March 2016
Work begins
on the iOS app

May 2017
Public release of
both apps

What do we need to test…
… with no QA team?

What do we need to test?

•What we don’t need to test:
•Network calls are covered by our Platform tests

•Utility Methods (date formatting, currency formatting
etc)

•Views, views, views
•Interaction with these views

Writing Tests

•Java - Mockito, assertJ
• Android - Espresso
• RxJava2 & Dagger2

Test All Views Are Visible
@Test
public void scrollAllSlides() {
 // perform
 activityRule.launchActivity(null);

 // Wait until the layout is created
 onView(withId(R.id.saving_intro_pager)).check(matches(isDisplayed()));

 SavingIntroActivity.Slide[] slides = SavingIntroActivity.Slide.values();
 for (int i = 0; i < slides.length; i++) {
 onView(allOf(withId(R.id.saving_intro_slide_image), isCompletelyDisplayed()))
 .check(matches(withImageResource(slides[i].image)));
 onView(allOf(withId(R.id.saving_intro_slide_title), isCompletelyDisplayed()))
 .check(matches(withText(slides[i].title)));
 onView(allOf(withId(R.id.saving_intro_slide_description), isCompletelyDisplayed()))
 .check(matches(withText(slides[i].description)));
 onView(withId(R.id.saving_intro_pager)).perform(swipeLeft());
 }
}

Testing Visibility of Views in Specific Scenarios
@Test
public void whenUnableToLoadMissingDataErrorIsDisplayed() throws Exception {
 doThrow(new IOException("")).when(starlingStorage).loadMissingData();

 activityTestRule.launchActivity(null);

 verify(snackbarManager).show(any(), anyInt(), anyInt(), anyInt(), any());
 verify(starlingStorage).loadMissingData();

 // Retry button tries to reload data
 onView(withText(getTargetContext().getString(R.string.button_retry)))
.perform(click());
 verify(starlingStorage, times(2)).loadMissingData();
}

Running the Tests

•Unit tests can be run wherever
•Different strategy is required for UI tests
•UI tests need to cover:

•Fragmentation
•Usability

Exploring Options

? …

Anbox
…

…

Test Reporting

• Log the reason for failures
• Record all the UI tests
• Take screenshots of failures

Example of Reporting in Action
android.support.test.espresso.NoMatchingViewException: No views in
hierarchy found matching: with string from resource id:
<2131756434>[payments_add_payee] value: Add payee

View Hierarchy:
+>DecorView{id=-1, visibility=VISIBLE, width=600, height=1024, has-
focus=false, has-focusable=true, has-window-focus=true, is-
clickable=false, is-enabled=true, is-focused=false, is-focusable=false,
is-layout-requested=false, is-selected=false, layout-
params=WM.LayoutParams{(0,0)(fillxfill) ty=1 fl=#85810100 pfl=0x20000
wanim=0x1030465 needsMenuKey=2}, tag=null, root-is-layout-
requested=false, has-input-connection=false, x=0.0, y=0.0, child-
count=3}
|
……

@Test
public void testAddPayeeActivityLaunched() {
 // given
 when(payeeEntity.observeAll()).thenReturn(Flowable.empty());
 Intents
 .intending(activityOf(PayeeLookupActivity.class))
 .respondWith(new Instrumentation.ActivityResult(RESULT_OK, null));

 // perform
 startActivity();
 onView(withText(R.string.payments_add_payee)).perform(click());

 // verify
 Intents.intended(activityOf(PayeeLookupActivity.class));
}

Resolved by adding this to the test set-up:

Failed here

when(preferences.hasStarlingPayRequestIntroBeenShown())
.thenReturn(true);

How we can take this further

•Slackbot integration
•Concurrency
•Appium for application upgrade tests

To conclude…

•Stability of the app does not need to be sacrificed
•This is just a start

@StarlingDev
@StarlingBank

@DaProd_ (Yann)
@NovemberGave (Teresa)

Q & A

