
Microservices Lessons
Learned From a

Startup Perspective

Susanne Kaiser
@suksr

CTO at Just Software
@JustSocialApps

Each journey is different

“People try to copy Netflix,
but they can only copy what they see.
They copy the results, not the process.”

Adrian Cockcroft, AWS VP Cloud Archtitect,
former Netflix Chief Cloud Architect

Affecting Circumstances

Team
● Size
● Skillset
● Structure

Legacy-System
● Maintenance effort
● Environment

Strategy
● New Features
● Timeline/Milestones

Background

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

JUST PEOPLE
User Management

Background

One team

One collaboration product

One
technology
stack

Single Unit

At The Beginning … A Monolith In Every Aspect

Productivity suffered

Usability and UX suffered

New features
released slowly

Background

After An Evolving Time ...

Background

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

JUST PEOPLE
User Management

Separate Collaboration Apps

Background

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

Small, Autonomous Teams

JUST PEOPLE
User Management

With well-defined responsibilities

Background

Product Organization Software architecture

In The Long Run ...

Straightforward Process?

Start End

No Straightforward Process!

Start

Theory Reality

Start End

First Approach As Co-Existing Service

JUST DRIVE

JUST DRIVE

JUST LIST

JUST CONNECT

JUST PAGE

DB Adapter

REST API

Web App

DB Adapter

Message
Broker

Mes
sa

ge
 Br

ok
er

Ad
ap

ter

Message Broker

Adapter

Lesson #1: Too Many Steps At Once Slow You Down

More features

New UI

New data structure

Maintain & run
current system

Timelines

Start With One Manageable Step At A Time

Easy to extract Changing
frequently

Different resource
requirements Split in steps, e.g.

top/down

Lesson #2: Deferring Solving Authz Handling Hurts

I have a new service
that needs authorization. Where is
the authz service I could use?

Not there, yet. Sorry!

Ok, than I am putting my code
to the place where authz handling
exists … to the monolith.

Feeding the monolith

I have a new service
that needs authorization. Where is
the authz service I could use?

Not there, yet. Sorry!

Ok, than I am implementing authz
in my local service.

Re-implementing authz w/ every service

Lesson #2: Deferring Solving Authz Handling Hurts

Solve Authz Handling Early!

Lesson #3: Less Aligned Strategy Is Expensive

Separate Apps Separate Teams Separate Services Bundled Deployment

Lesson #4: Data Related Overhead

Setup Maintain SetupSetup Maintain

Keep in sync

Lesson #4: Data Related Overhead

Streams

How To Interact Between Services?

Request-Driven Event-Driven

command

query

produce
consume

Event-Stream

Hybrid

produce
consume

command/query

Event-Stream

How To Manage Data?

Profile
Service

Document
Service

Task
Service

Hybrid Model

REST

getProfile(ProfileId)
Remote query
directly to source

Event stream purely for notifications

How To Manage Data?

Profile
Service

Document
Service

Task
Service

Event-Driven State Transfer

ProfileUpdated
Event

Local copy/cache

How To Manage Data?
Source Of Truth

Database

Events

“Traditional” Event-Driven System

How To Manage Data?
Multiple Sources Of Truth

Database

Events

Internal source of truth

External source of truth

Dual writes

“Traditional” Event-Driven System

How To Manage Data?
Multiple Sources Of Truth

Database

Events

Internal source of truth

External source of truth

Dual writes

“Traditional” Event-Driven System Event Sourcing

Derive state from events

Event-Store

Single Source Of Truth

Events as first-class entities

Apache Kafka

P0 P1 P2 P3
0
1
2
3

0
1
2

0
1
2
3

0
1
2
3

Consumer

Topic

Consumer Consumer Consumer Consumer

Consumer Group Consumer Group

Producer

Each partition is assigned
to one consumer within

a consumer group

Immutable, ordered sequence of
records per partition

Each consumer controls
its position per partition
(offset)

writes

reads
Each consumer subscribes

to a topic

Consumer

Apache Kafka

P0 P1 P2 P3
0
1
2
3

0
1
2

0
1
2
3

0
1
2
3

Consumer

Topic

Consumer Consumer Consumer Consumer

Consumer Group Consumer Group

Producer
writes

reads

Scalable

Fault-tolerant

Node/Broker

● Data stored to disk
● Replicated partitions
● Consumer conrols its offset

● Topic can be scaled out
to several nodes

● Messages load-balanced
between consumer of one group

● Add partitions for more parallelism
● Adding capacity with 0 downtime

Fast
● O(1) to append messages
● LinkedIn 2016:

1.4 trillion messages/day
across over 1400 brokers

Consumer

Apache Kafka Combines ...

Messaging System Storage System Streaming Platform

Primary Use Cases Of Streaming Platforms

Stream Processing Data Integration

Source

Sink

Kafka Streams

Topic

Unbounded, ordered sequence

Key/value-pairContinuously
updating

Kafka Streams

Topic Service

State Store (disk backed)

Running in the
process of
Microservice

Loads topic on startup

Streams can be:
● Joined
● Filtered
● Grouped
● Aggregated
● etc.Streams make data available wherever it’s needed

Kafka Streams For Materialized Views

Document Topic

Profile Topic

Document Service

 API

Table for enrichment

Stream

Matererialized View
as State Store

Stream-Table-Join

Low Barrier To Entry For New Service

● No separate data storage to set up
● No extra local copies / caches to set up and to keep in sync
● No remote calls
● Materialized View always up to date
● Scalable, fault-tolerant, fast

=> reducing overhead, increasing performance & autonomy

If We Could Start The Journey Again ...

● Start with one manageable step at a time
● Take care of Authorization handling early
● Align strategy w/ Microservices goals
● Using Kafka Streams for Materialized Views

THANK YOU!
Susanne Kaiser

@suksr

CTO at Just Software
@JustSocialApps

