
and FUTUREThe

Serverless
OBSERVABILIT

Y

ofpresent

hi, my name is Yan.

hi, my name is Yan.

hi, my name is Yan.

AWS user since 2009

http://bit.ly/yubl-serverless

http://bit.ly/yubl-serverless

http://bit.ly/2Cdsai5

http://bit.ly/2Cdsai5

2017

observability

http://bit.ly/2EXQZBj

http://bit.ly/2EXQZBj

http://bit.ly/2EXKEFZ

http://bit.ly/2EXKEFZ

mm… I wonder what’s
going on here…

what is observability?
how is it different from monitoring?

Monitoring
watching out for
known failure modes
in the system,
e.g. network I/O, CPU,
memory usage, …

Observability

being able to debug
the system, and gain

insights into the
system’s behaviour

However, I would argue that the health of the system no
longer matters. We've entered an era where what matters is
the health of each individual event, or each individual user's
experience, or each shopping cart's experience (or other high
cardinality dimensions). With distributed systems you
don't care about the health of the system, you care about
the health of the event or the slice. ”http://bit.ly/2E2QngU- Charity Majors

“

http://bit.ly/2E2QngU

However, I would argue that the health of the system no
longer matters. We've entered an era where what matters is
the health of each individual event, or each individual user's
experience, or each shopping cart's experience (or other high
cardinality dimensions). With distributed systems you
don't care about the health of the system, you care about
the health of the event or the slice. ”http://bit.ly/2E2QngU- Charity Majors

“

http://bit.ly/2E2QngU

These are the four pillars of the Observability Engineering
team’s charter:

• Monitoring
• Alerting/visualization
• Distributed systems tracing infrastructure
• Log aggregation/analytics

“

” http://bit.ly/2DnjyuW- Observability Engineering at Twitter

http://bit.ly/2DnjyuW

Observability is useful even outside of incidents and outages

microservices death stars circa 2015

microservices death stars circa 2015

I got this!

new
challenges

new
challenges

NO ACCESS
to underlying OS

NOWHERE
to install agents/daemons

•nowhere to install agents/daemons

new challenges

user request
user request
user request
user request
user request
user request
user request

critical paths:
minimise user-facing latency

handler
handler
handler
handler
handler
handler
handler

user request
user request
user request
user request
user request
user request
user request

critical paths:
minimise user-facing latency

StatsD

handler
handler
handler
handler
handler
handler
handler

rsyslog

background processing:
batched, asynchronous, low

overhead

user request
user request
user request
user request
user request
user request
user request

critical paths:
minimise user-facing latency

StatsD

handler
handler
handler
handler
handler
handler
handler

rsyslog

background processing:
batched, asynchronous, low

overhead

NO background processing
except what platform provides

•no background processing

•nowhere to install agents/daemons

new challenges

EC2

concurrency used to be
handled by your code

EC2

Lambda

Lambda

Lambda

Lambda

Lambda
now, it’s handled by the
AWS Lambda platform

EC2

logs & metrics used to be
batched here

EC2

Lambda

Lambda

Lambda

Lambda

Lambda

now, they are batched in each
concurrent execution, at best…

HIGHER concurrency to log
aggregation/telemetry system

•higher concurrency to telemetry system

•nowhere to install agents/daemons

•no background processing

new challenges

Lambda

cold start

Lambda

data is batched between
invocations

Lambda idle

data is batched between
invocations

Lambda idle

garbage collectiondata is batched between
invocations

Lambda idle

garbage collectiondata is batched between
invocations

HIGH chance of data loss

•high chance of data loss (if batching)

•nowhere to install agents/daemons

•no background processing

•higher concurrency to telemetry system

new challenges

Lambda

my code
send metrics

my code
send metrics

my code
send metrics

internet internet

press button something happens

http://bit.ly/2Dpidje

http://bit.ly/2Dpidje

?

functions are often chained together
via asynchronous invocations

?

SNS

Kinesis
CloudWatch

Events

CloudWatch
LogsIoT

DynamoDB

S3 SES

?

SNS

Kinesis
CloudWatch

Events

CloudWatch
LogsIoT

DynamoDB

S3 SES

tracing ASYNCHRONOUS
invocations through so many

different event sources is difficult

•asynchronous invocations

•nowhere to install agents/daemons

•no background processing

•higher concurrency to telemetry system

•high chance of data loss (if batching)

new challenges

the Present

These are the four pillars of the Observability Engineering
team’s charter:

• Monitoring
• Alerting/visualization
• Distributed systems tracing infrastructure
• Log aggregation/analytics

“

” http://bit.ly/2DnjyuW- Observability Engineering at Twitter

http://bit.ly/2DnjyuW

2016-07-12T12:24:37.571Z 994f18f9-482b-11e6-8668-53e4eab441ae
GOT is off air, what do I do now?

2016-07-12T12:24:37.571Z 994f18f9-482b-11e6-8668-53e4eab441ae
GOT is off air, what do I do now?

UTC Timestamp Request Id

your log message

one log group per
function

one log stream for each
concurrent invocation

logs are not easily searchable in
CloudWatch Logs

me

CloudWatch Logs

CloudWatch Logs AWS Lambda ELK stack

…

CloudWatch Logs

•no background processing

•nowhere to install agents/daemons

new challenges

my code
send metrics

internet internet

press button something happens

those extra 10-20ms for
sending custom metrics would
compound when you have
microservices and multiple
APIs are called within one slice
of user event

Amazon found every 100ms of latency cost them 1% in sales.
http://bit.ly/2EXPfbA

http://bit.ly/2EXPfbA

console.log(“hydrating yubls from db…”);

console.log(“fetching user info from user-api”);

console.log(“MONITORING|1489795335|27.4|latency|user-api-latency”);

console.log(“MONITORING|1489795335|8|count|yubls-served”);

timestamp metric value

metric type

metric namemetrics

logs

CloudWatch Logs AWS Lambda

ELK stack

log
s

m
etrics

CloudWatch

delay
cost

concurrency

delay
cost

concurrency
no latency
overhead

API Gateway

send custom metrics
asynchronously

SNS KinesisS3API Gateway

…

send custom metrics
asynchronously

send custom metrics as
part of function invocation

X-Ray

do not span over API Gateway

narrow focus on a function

good for homing in on performance issues
for a particular function, but offers little to
help you build intuition about how your

system operates as a whole.

However, I would argue that the health of the system no
longer matters. We've entered an era where what matters is
the health of each individual event, or each individual user's
experience, or each shopping cart's experience (or other high
cardinality dimensions). With distributed systems you don't
care about the health of the system, you care about the
health of the event or the slice. ”http://bit.ly/2E2QngU- Charity Majors

“

http://bit.ly/2E2QngU

follow the data

don’t span over async invocations

good for identifying dependencies of a function,
but not good enough for tracing the entire call
chain as user request/data flows through the

system via async event sources.

don’t span over non-AWS services

static view

our tools need to do more to help us with
understanding & debugging our distributed system,

not just what happens inside one function

“one user action/vertical slice through the system”

microservices death stars circa 2015

microservices death stars circa 2015

HELP…

WARNING: this is part fiction, part inspired by new tools

DASHBOARDS

different dimensions of X splattered
across the screen

+ cold starts
+ throttled invocations
+ concurrent executions
+ estimated cost ($)

SubscriberGetAccount
200,545

0
19
94

0

0 %
0 %

Est Cost:

Req Rate:
$54.0/s

20,056.0/s

Concurrency
Median

Mean 99.5th
99th
90th370

1ms
4ms 61ms

44ms
10ms

circle colour and size represent
health and traffic volume

2 minutes of request rate to
show relative changes in traffic

no. of concurrent executions
of this function

Request rate
Estimated cost

Error percentage
of last 10 seconds
Cold start percentage

last 10 seconds

last minute latency percentiles

200,545
0

19
94

0

Rolling 10 second counters
with 1 second granularity

Successes
Cold starts

Timeouts

Throttled Invocations
Errors

SubscriberGetAccount
200,545

0
19
94

0

0 %
0 %

Est Cost:

Req Rate:
$54.0/s

20,056.0/s

Concurrency
Median

Mean 99.5th
99th
90th370

1ms
4ms 61ms

44ms
10ms

circle colour and size represent
health and traffic volume

2 minutes of request rate to
show relative changes in traffic

no. of concurrent executions
of this function

Request rate
Estimated cost

Error percentage
of last 10 seconds
Cold start percentage

last 10 seconds

last minute latency percentiles

200,545
0

19
94

0

Rolling 10 second counters
with 1 second granularity

Successes
Cold starts

Timeouts

Throttled Invocations
Errors

SubscriberGetAccount
200,545

0
19
94

0

0 %
0 %

Est Cost:

Req Rate:
$54.0/s

20,056.0/s

Concurrency
Median

Mean 99.5th
99th
90th370

1ms
4ms 61ms

44ms
10ms

circle colour and size represent
health and traffic volume

2 minutes of request rate to
show relative changes in traffic

no. of concurrent executions
of this function

Request rate
Estimated cost

Error percentage
of last 10 seconds
Cold start percentage

last 10 seconds

last minute latency percentiles

200,545
0

19
94

0

Rolling 10 second counters
with 1 second granularity

Successes
Cold starts

Timeouts

Throttled Invocations
Errors

SubscriberGetAccount
200,545

0
19
94

0

0 %
0 %

Est Cost:

Req Rate:
$54.0/s

20,056.0/s

Concurrency
Median

Mean 99.5th
99th
90th370

1ms
4ms 61ms

44ms
10ms

circle colour and size represent
health and traffic volume

2 minutes of request rate to
show relative changes in traffic

no. of concurrent executions
of this function

Request rate
Estimated cost

Error percentage
of last 10 seconds
Cold start percentage

last 10 seconds

last minute latency percentiles

200,545
0

19
94

0

Rolling 10 second counters
with 1 second granularity

Successes
Cold starts

Timeouts

Throttled Invocations
Errors

SubscriberGetAccount
200,545

0
19
94

0

0 %
0 %

Est Cost:

Req Rate:
$54.0/s

20,056.0/s

Concurrency
Median

Mean 99.5th
99th
90th370

1ms
4ms 61ms

44ms
10ms

circle colour and size represent
health and traffic volume

2 minutes of request rate to
show relative changes in traffic

no. of concurrent executions
of this function

Request rate
Estimated cost

Error percentage
of last 10 seconds
Cold start percentage

last 10 seconds

last minute latency percentiles

200,545
0

19
94

0

Rolling 10 second counters
with 1 second granularity

Successes
Cold starts

Timeouts

Throttled Invocations
Errors

birds-eye view of our system as it lives and breathes

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face APItrace async invocations

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

trace non-AWS resources

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

Logs

timestamp component message

POST /user2018/01/25 20:51:23.188

2018/01/25 20:51:23.201 create-user

2018/01/25 20:51:23.215 create-user

2018/01/25 20:51:23.521 tag-user

incoming request…

saving user [theburningmonk] in the [user] table…

saved user [theburningmonk] in the [user] table

level

debug

debug

debug

debug tagging user [theburningmonk] with Azure Face API…

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

Logs

timestamp component message

POST /user2018/01/25 20:51:23.188

2018/01/25 20:51:23.201 create-user

2018/01/25 20:51:23.215 create-user

2018/01/25 20:51:23.521 tag-user

incoming request…

saving user [theburningmonk] in the [user] table…

saved user [theburningmonk] in the [user] table

level

debug

debug

debug

debug tagging user [theburningmonk] with Azure Face API…

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

Logs

timestamp component message

POST /user2018/01/25 20:51:23.188 incoming request…

level

debug

request-id

start-time

0ae4ba5d-dab1-4f9e-9de7-eace27ebfbc2

2018/01/25 20:51:23.188

method POST

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

Logs

timestamp component message

2018/01/25 20:51:23.201 create-user

2018/01/25 20:51:23.215 create-user

2018/01/25 20:51:23.585

saving user [theburningmonk] in the [user] table…

saved user [theburningmonk] in the [user] table

level

debug

debug

debug uploading profile image…

create-user debug tagged user [theburningmonk] with Azure Face API…

create-user2018/01/25 20:51:23.587

create-auth0-user

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

Logs

timestamp component message

2018/01/25 20:51:23.201 create-user

2018/01/25 20:51:23.215 create-user

2018/01/25 20:51:23.585

saving user [theburningmonk] in the [user] table…

saved user [theburningmonk] in the [user] table

level

debug

debug

debug uploading profile image…

create-user debug tagged user [theburningmonk] with Azure Face API…

create-user2018/01/25 20:51:23.587

click here to go to code create-auth0-user

Logs Input/Output

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

input output

{
 "body": "{ \"username\":\"theburningmonk\"}",
 "resource": "/user",
 "requestContext": {
 "resourceId": "123456",
 "apiId": “1234567890",

"resourcePath": "/user",
 "httpMethod": "POST"

{
 "statusCode": 200
}

create-auth0-user

Logs Input/Output

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

input output

{ "Records": [
 { "Sns": {
 "Type": "Notification",
 "MessageId": "…",
 "TopicArn": "…",
 "Message": "…",
 "Timestamp": "2018/01/25 20:51:24.215",

{
 "error": null,
 "result": "OK"
}

create-auth0-user

Logs Input/Output

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

reformat-imagestag-user

Face API

input error

{ "Records": [
 { "Sns": {
 "Type": "Notification",
 "MessageId": "…",
 "TopicArn": "…",
 "Message": "…",
 "Timestamp": "2018/01/25 20:51:24.215",

[com.spaceape.dragon.handler.ReformatProfileImageHandle
r] Null reference exception
 *java.lang.NullReferenceException: …
 * at …
 * at …
 * at …

create-auth0-user

Logs Input/Output

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

create-auth0-user

reformat-imagestag-user

Face API

input error

{ "Records": [
 { "Sns": {
 "Type": "Notification",
 "MessageId": "…",
 "TopicArn": "…",
 "Message": "…",
 "Timestamp": "2018/01/25 20:51:24.215",

[com.spaceape.dragon.handler.ReformatProfileImageHandle
r] Null reference exception
 *java.lang.NullReferenceException: …
 * at …
 * at …
 * at …

!

All

0 200 400 600 800

create-user
…user.insert_user

…user.upload_img

tag-user
create-auto0-user

process-images
resize-images

reformat-images!

837ms
406ms

66ms
114ms

122ms
82ms

240ms
157ms

35ms

All

0 200 400 600 800

create-user
…user.insert_user

…user.upload_img

tag-user
create-auto0-user

process-images
resize-images

reformat-images!

837ms
406ms

66ms
114ms

122ms
82ms

240ms
157ms

35ms

Input/Output

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

create-auth0-user

reformat-imagestag-user

Face API

Logs

timestamp component messagelevel

!

All

0 200 400 600 800

create-user
…user.insert_user

…user.upload_img

tag-user
create-auto0-user

process-images
resize-images

reformat-images!

837ms
406ms

66ms
114ms

122ms
82ms

240ms
157ms

35ms

Input/Output

user

profile-images

POST /user

process-images

resize-images

image-tasks

Auth0

create-user

create-auth0-user

reformat-imagestag-user

Face API

Logs

timestamp component messagelevel

!

All

0 200 400 600 800

create-user
…user.insert_user

…user.upload_img

tag-user
create-auto0-user

process-images
resize-images

reformat-images!

837ms
406ms

66ms
114ms

122ms
82ms

240ms
157ms

35ms

all your needs in one placeTRACING

mmm… it’s a graph

what if we can query it
like a graph?

http://amzn.to/2nk7uiW

http://amzn.to/2nk7uiW

ability to query based on the relationship
between observed components

(as well as the components themselves)

root cause analysis

the elevated error rate in service X was caused by
DynamoDB table throttling.“ ”

payment was slow last
night around 10PM.

investigate.

time

95-percentile latency

service A

service B

10PM

time

95-percentile latency

service A

service B

10PM

causality? or correlation?

user-service

USESUSES

DEPENDS_ON

auth-serviceUSES
payment-service

DEPENDS_ON
“payment was slow last

night around 10PM”

user-table

user-service

USESUSES

DEPENDS_ON

auth-serviceUSES

DEPENDS_ON

payment-service

user-table

throttled exceptions!

user-table

user-stream

DEPENDS_ON

DEPENDS_ON USES

USES
USES

USES

U
SES

DEPENDS_ON DEPENDS_O
N

D
EPEN

D
S_O

N

PUBLISHES_TO

“what else is impacted by the throttled exceptions on user-table?”

user-table

user-stream

DEPENDS_ON

DEPENDS_ON USES

USES
USES

USES

U
SES

DEPENDS_ON DEPENDS_O
N

D
EPEN

D
S_O

N

PUBLISHES_TO

“what else is impacted by the throttled exceptions on user-table?”

wouldn’t that be nice?

MACHINE
LEARNING

use ML to auto-detect erroneous or
suspicious behaviours, or to suggest

possible improvements

!

Function [X] just performed
an unexpected write against
DynamoDB table [Y].

Should I…
 ignore it from now on
 shut it down!!

Observability Bot <bot@bestobservability.com>

Observability Bot <bot@bestobservability.com>

don’t bother me about this again

Observability Bot <bot@bestobservability.com>

auto-modify IAM role with DENY rule

Function [X]’s performance
has degraded since yesterday -
99% latency has gone up by
47% from 100ms to 147ms.

!

!

Function [X] can run faster &
cheaper if you increase its
memory allocation.

Should I…
 ignore it from now on
 update setting

zzz… the future of… zzz …
serverless observability… zzz

Simon Wardley

Simon Wardley

context &
movement

However, I would argue that the health of the system no
longer matters. We've entered an era where what matters is
the health of each individual event, or each individual user's
experience, or each shopping cart's experience (or other high
cardinality dimensions). With distributed systems you don't
care about the health of the system, you care about the
health of the event or the slice. ”http://bit.ly/2E2QngU- Charity Majors

“

http://bit.ly/2E2QngU

“one user action/vertical slice through the system”

movement

context

movement

The best way to predict the future
is to invent it.
- Alan Kay

The best way to invent
the future is to inception
someone else to do it.

- me

Serkan Özal
@serkan_ozal

Nitzan Shapira
@nitzanshapira

Ran Ribenzaft
@ranrib

Adam Johnson
@adjohn

Erica Windisch
@ewindisch

Charity Majors
@mipsytipsy

Cindy Sridharan
@copyconstruct

Erica Windisch
@ewindisch

Liz Fong-Jones
@lizthegrey

JBD
@rakyll

API Gateway and Kinesis
Authentication & authorisation (IAM, Cognito)
Testing
Running & Debugging functions locally
Log aggregation
Monitoring & Alerting
X-Ray
Correlation IDs
CI/CD
Performance and Cost optimisation
Error Handling
Configuration management
VPC
Security
Leading practices (API Gateway, Kinesis, Lambda)
Canary deployments

http://bit.ly/production-ready-serverless

get 40% off
with code:

ytcui

http://bit.ly/production-ready-serverless

