
Distributed Consensus:
Why Can't We All Just Agree?

Heidi Howard

PhD Student @ University of Cambridge
heidi.howard@cl.cam.ac.uk

@heidiann360
hh360.user.srcf.net

mailto:heidi.howard@cl.cam.ac.uk?subject=
http://hh360.user.srcf.net

Sometimes inconsistency is not an option
• Distributed locking

• Safety critical systems

• Distributed scheduling

• Strongly consistent databases

• Blockchain

Anything which requires guaranteed agreement

• Leader election

• Orchestration services

• Distributed file systems

• Coordination & configuration

• Strongly consistent databases

What is Distributed Consensus?

“The process of reaching agreement over
state between unreliable hosts connected
by unreliable networks, all operating
asynchronously”

A walk through time
We are going to take a journey through the developments in
distributed consensus, spanning over three decades. Stops
include:

• FLP Result & CAP Theorem

• Viewstamped Replication, Paxos & Multi-Paxos

• State Machine Replication

• Paxos Made Live, Zookeeper & Raft

• Flexible Paxos

Bob

Fischer, Lynch & Paterson Result
We begin with a slippery start

Impossibility of distributed
consensus with one faulty process
 Michael Fischer, Nancy Lynch

and Michael Paterson
ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems

1983

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

FLP Result
We cannot guarantee agreement in an asynchronous system where even
one host might fail.

Why?

We cannot reliably detect failures. We cannot know for sure the difference
between a slow host/network and a failed host

Note: We can still guarantee safety, the issue limited to guaranteeing
liveness.

Solution to FLP
In practice:

We approximate reliable failure detectors using heartbeats and timers. We
accept that sometimes the service will not be available (when it could be).

In theory:

We make weak assumptions about the synchrony of the system e.g.
messages arrive within a year.

Viewstamped Replication
the forgotten algorithm

Viewstamped Replication Revisited
Barbara Liskov and James Cowling

MIT Tech Report
 MIT-CSAIL-TR-2012-021

Not the original from 1988, but recommended

http://pmg.csail.mit.edu/papers/vr-revisited.pdf

Viewstamped Replication

In my view, the pioneering algorithm on the field of distributed consensus.

Approach: Select one node to be the ‘master’. The master is responsible for
replicating decisions. Once a decision has been replicated onto the majority
of nodes then it is commit.

We rotate the master when the old master fails with agreement from the
majority of nodes.

Paxos
Lamport’s consensus algorithm

The Part-Time Parliament
Leslie Lamport

ACM Transactions on Computer Systems
May 1998

http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf

Paxos

The textbook algorithm for reaching consensus on a single value.

• two phase process: promise and commit

• each requiring majority agreement (aka quorums)

Paxos Example -
Failure Free

1 2

3

P:
C:

P:
C:

P:
C:

1 2

3

P:
C:

P:
C:

P:
C:

B

Incoming request from Bob

1 2

3

P:
C:

P: 13
C:

P:
C:

B

Promise (13) ?

Phase 1

Promise (13) ?

1 2

3 P: 13
C:

OKOK

P: 13
C:

P: 13
C:

Phase 1

1 2

3 P: 13
C: 13, B

P: 13
C:

P: 13
C:

Phase 2

Commit (13,) ?B Commit (13,) ?B

1 2

3 P: 13
C: 13, B

P: 13
C: 13,

P: 13
C: 13,

Phase 2

B B

OKOK

1 2

3 P: 13
C: 13, B

P: 13
C: 13,

P: 13
C: 13, B B

OK

Bob is granted the lock

Paxos Example - Node
Failure

1 2

3

P:
C:

P:
C:

P:
C:

1 2

3

P:
C:

P: 13
C:

P:
C:

Promise (13) ?

Phase 1

B

Incoming request from Bob

Promise (13) ?

1 2

3

P: 13
C:

P: 13
C:

P: 13
C:

Phase 1

B

OK
OK

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C:

Phase 2

Commit (13,) ?B

B

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C: 13,

Phase 2

B

B

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C: 13,

Alice

B

B

A

1 2

3

P: 22
C:

P: 13
C: 13,

P: 13
C: 13,

Phase 1

B

B
A

Promise (22) ?

1 2

3

P: 22
C:

P: 13
C: 13,

P: 22
C: 13,

Phase 1

B

B
A

OK(13,)B

1 2

3

P: 22
C: 22,

P: 13
C: 13,

P: 22
C: 13,

Phase 2

B

B
A

Commit (22,) ?B

B

1 2

3

P: 22
C: 22,

P: 13
C: 13,

P: 22
C: 22,

Phase 2

B

B

OK

B

NO

Paxos Example -
Conflict

1 2

3

P: 13
C:

P: 13
C:

P: 13
C:

B

Phase 1 - Bob

1 2

3

P: 21
C:

P: 21
C:

P: 21
C:

B

Phase 1 - Alice

A

1 2

3

P: 33
C:

P: 33
C:

P: 33
C:

B

Phase 1 - Bob

A

1 2

3

P: 41
C:

P: 41
C:

P: 41
C:

B

Phase 1 - Alice

A

What does Paxos give us?

Safety - Decisions are always final

Liveness - Decision will be reached as long as a majority of nodes are up
and able to communicate*. Clients must wait two round trips to the majority
of nodes, sometimes longer.

*plus our weak synchrony assumptions for the FLP result

Multi-Paxos
Lamport’s leader-driven consensus algorithm

Paxos Made Moderately Complex
Robbert van Renesse and Deniz

Altinbuken
ACM Computing Surveys

April 2015
Not the original, but highly recommended

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

Multi-Paxos

Lamport’s insight:

Phase 1 is not specific to the request so can be done before the request
arrives and can be reused for multiple instances of Paxos.

Implication:

Bob now only has to wait one round trip

State Machine Replication
fault-tolerant services using consensus

Implementing Fault-Tolerant
Services Using the State Machine

Approach: A Tutorial
Fred Schneider

ACM Computing Surveys
1990

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

State Machine Replication (SMR)

A general technique for making a service, such as a
database, fault-tolerant.

Application

Client Client

Application

Application

Application

Client

Client

Network

Consensus

Consensus

Consensus

Consensus

Consensus

CAP Theorem
You cannot have your cake and eat it

CAP Theorem
Eric Brewer

Presented at Symposium on
Principles of Distributed

Computing, 2000

Consistency, Availability & Partition
Tolerance - Pick Two

1 2

3 4

B C

Paxos Made Live & Chubby
How google uses Paxos

Paxos Made Live - An Engineering
Perspective

Tushar Chandra, Robert Griesemer
and Joshua Redstone

ACM Symposium on Principles of
Distributed Computing

 2007

http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf

Isn’t this a solved problem?

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system.

In order to build a real-world system, an expert needs to use
numerous ideas scattered in the literature and make several
relatively small protocol extensions.

The cumulative effort will be substantial and the final system
will be based on an unproven protocol.”

Paxos Made Live

Paxos made live documents the challenges in constructing Chubby, a
distributed coordination service, built using Multi-Paxos and State machine
replication.

Challenges
• Handling disk failure and corruption

• Dealing with limited storage capacity

• Effectively handling read-only requests

• Dynamic membership & reconfiguration

• Supporting transactions

• Verifying safety of the implementation

Fast Paxos
Like Multi-Paxos, but faster

Fast Paxos
Leslie Lamport

Microsoft Research Tech Report
MSR-TR-2005-112

http://research.microsoft.com/apps/pubs/default.aspx?id=64624

Fast Paxos

Paxos: Any node can commit a value in 2 RTTs

Multi-Paxos: The leader node can commit a value in 1 RTT

But, what about any node committing a value in 1 RTT?

Fast Paxos

We can bypass the leader node for many operations, so any node can
commit a value in 1 RTT.

However, we must increase the size of the quorum.

Zookeeper
The open source solution

Zookeeper: wait-free coordination
for internet-scale systems

Hunt et al
USENIX ATC 2010

Code: zookeeper.apache.org

http://static.cs.brown.edu/courses/csci2270/archives/2012/papers/replication/hunt.pdf
http://static.cs.brown.edu/courses/csci2270/archives/2012/papers/replication/hunt.pdf
http://zookeeper.apache.org

Zookeeper

Consensus for the masses.

It utilizes and extends Multi-Paxos for strong
consistency.

Unlike “Paxos made live”, this is clearly
discussed and openly available.

Egalitarian Paxos
Don’t restrict yourself unnecessarily

There Is More Consensus in
Egalitarian Parliaments

Iulian Moraru, David G. Andersen,
Michael Kaminsky

SOSP 2013

also see Generalized Consensus and Paxos

https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
http://research.microsoft.com/pubs/64631/tr-2005-33.pdf

Egalitarian Paxos

The basis of SMR is that every replica of an
application receives the same commands in the same
order.

However, sometimes the ordering can be relaxed…

C=1 B? C=C+1 C? B=0 B=C

C=1 B?

C=C+1

C?

B=0

B=C

Partial Ordering

Total Ordering

C=1 B? C=C+1 C? B=0 B=C

Many possible orderings

B? C=C+1 C?B=0 B=CC=1

B?C=C+1 C? B=0 B=CC=1

B? C=C+1 C? B=0 B=CC=1

Egalitarian Paxos

Allow requests to be out-of-order if they are commutative.

Conflict becomes much less common.

Works well in combination with Fast Paxos.

Raft Consensus
Paxos made understandable

In Search of an Understandable
Consensus Algorithm

Diego Ongaro and John Ousterhout
USENIX ATC

2014

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf

Raft
Raft has taken the wider community by storm. Largely, due to its
understandable description.

It’s another variant of SMR with Multi-Paxos.

Key features:

• Really strong leadership - all other nodes are passive

• Various optimizations - e.g. dynamic membership and log compaction

Flexible Paxos
Paxos made scalable

Flexible Paxos: Quorum
intersection revisited

Heidi Howard, Dahlia Malkhi,
Alexander Spiegelman

ArXiv:1608.06696

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://arxiv.org/find/cs/1/au:+Howard_H/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Malkhi_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Spiegelman_A/0/1/0/all/0/1

Majorities are not needed

Usually, we use require majorities to agree so we can guarantee that all
quorums (groups) intersect.

This work shows that not all quorums need to intersect. Only the ones used for
phase 2 (replication) and phase 1 (leader election).

This applies to all algorithms in this class: Paxos, Viewstamped Replication,
Zookeeper, Raft etc..

Example: Non-strict majorities

Phase 2
Replication quorum

Phase 1
Leader election quorum

Example: Counting quorums

Replication quorum Leader election quorum

Example: Group quorums

Replication quorum Leader election quorum

How strong is the leadership?

Strong
Leadership Leaderless

Paxos
Egalitarian

Paxos

Raft Viewstamped
Replication
Multi-Paxos

Fast Paxos

Leader only
when neededLeader driven

Zookeeper
Chubby

Who is the winner?
Depends on the award:

• Best for minimum latency: Viewstamped Replication

• Most widely used open source project: Zookeeper

• Easiest to understand: Raft

• Best for WANs: Egalitarian Paxos

Future

1. More scalable consensus algorithms utilizing Flexible Paxos.

2. A clearer understanding of consensus and better explained
algorithms.

3. Consensus in challenging settings such as geo-replicated
systems.

Summary

Do not be discouraged by impossibility results and
dense abstract academic papers.

Don’t give up on consistency. Consensus is
achievable, even performant and scalable.

Find the right algorithm and quorum system for your
specific domain. There is no single silver bullet.

heidi.howard@cl.cam.ac.uk
@heidiann360

mailto:heidi.howard@cl.cam.ac.uk?subject=

