Track: Modern Learning Systems


Day of week:

Breakthroughs in fundamental algorithms, hardware and tooling mean that modern learning systems look very different to those deployed just a few years ago. In this session we'll cover the practical, real world use of the latest machine learning technologies in production environments.

We'll learn about the technical details of deep learning and artificial intelligence products from the people who built and deployed them in extremely large scale, high profile systems. We'll hear about the latest libraries and toolkits, which make prototyping and productionizing new ideas easier and quicker. And we'll learn about how we can make use best practices from software engineering to make this historically fragile and costly area of software development more rigorous and reliable.

Track Host:
Mike Lee Williams
Director of Research @ Fast Forward Labs
Mike Lee Williams is Director of Research at Fast Forward Labs, an applied machine intelligence lab in New York City. He builds prototypes that bring the latest ideas in machine learning and AI to life, and works with Fast Forward Labs's clients to help them understand how to make use of these new technologies. He has a PhD in astrophysics from Oxford.
10:35am - 11:25am

by Stephen Whitworth
Co-founder and Machine Learning Engineer @Ravelin

Machine learning is powering huge advances in products that we know and love. As a result, ever growing parts of the systems we build are changing from the deterministic to the probabilistic. The accuracy of machine learning applications can quickly deteriorate in the wild without strategies for testing models, instrumenting their behaviour and the ability to introspect and debug incorrect predictions. Wouldn't it be nice to have the best of the software engineering and machine learning...

11:50am - 12:40pm

by Anjuli Kannan
Software Engineer @GoogleBrain

Anjuli will describe the algorithmic, scaling and deployment considerations involved in an extremely prominent application of cutting-edge deep learning in a user-facing product: the Smart Reply feature of Google Inbox.

1:40pm - 2:30pm

Open Space
2:55pm - 3:45pm

by Micha Gorelick
Research Engineer @FastForwardLabs, Keras Contributor

The rapidly growing and changing zoo of deep learning frameworks can be hard to keep up with. In this talk Micha will begin by introducing deep learning at a conceptual level. He'll then give an overview of what frameworks like Tensorflow, Keras, Theano, etc. do, and where their strengths and weaknesses lie. He'll then show to build a non-trivial deep learning system using Keras, a particularly practical high level framework suitable for prototypes and production.