AI and ML for Software Engineers: Foundational Insights

Gain a solid understanding of the fundamental concepts, tools, and techniques of artificial intelligence and machine learning, empowering software engineers to build intelligent and innovative applications.


From this track

Session

Lessons Learned From Building LinkedIn’s First Agent: Hiring Assistant

In October 2024, we announced LinkedIn’s first agent, Hiring Assistant to a select group of LinkedIn customers.

Speaker image - Karthik Ramgopal

Karthik Ramgopal

Distinguished Engineer & Tech Lead of the Product Engineering Team @LinkedIn, 15+ Years of Experience in Full-Stack Software Development

Speaker image - Daniel Hewlett

Daniel Hewlett

Principal AI Engineer & Technical Lead for AI @LinkedIn, 12+ Years of Expierence in ML and AI Engineering, Previously @Google

Session

Building Embedding Models for Large-Scale Real-World Applications

Embedding models are at the core of search, recommendation, and retrieval-augmented generation (RAG) systems, transforming data into meaningful representations.

Speaker image - Sahil Dua

Sahil Dua

Senior Software Engineer, Machine Learning @Google, Stanford AI, Co-Author of “The Kubernetes Workshop”, Open-Source Enthusiast

Session

Foundation Models for Recommenders: Challenges, Successes, and Lessons Learned

Recommender systems are an integral part of most products nowadays and are often a key driver of discovery for users of the product.

Speaker image - Moumita Bhattacharya

Moumita Bhattacharya

Senior Research Scientist @Netflix, Previously @Etsy

Session

AI for Food Image Generation in Production: How & Why

In this talk, we will conduct a technical overview of a client-facing Food Image Generation solution developed at Delivery Hero.

Speaker image - Iaroslav  Amerkhanov

Iaroslav Amerkhanov

Senior Data Scientist @Delivery Hero

Session

How to Unlock Insights and Enable Discovery Within Petabytes of Autonomous Driving Data

For autonomous vehicle companies, finding valuable insights within millions of hours of video data is essential yet challenging.

Speaker image - Kyra Mozley

Kyra Mozley

Machine Learning Engineer @Wayve

Session

Deploy MultiModal RAG Systems with vLLM

While text-based RAG systems have been everywhere in the last year and a half, there is so much more than text data. Images, audio, and documents often need to be processed together to provide meaningful insights, yet most RAG implementations focus solely on text.

Speaker image - Stephen Batifol

Stephen Batifol

Developer Advocate @Zilliz, Founding Member of the MLOps Community Berlin, Previously Machine Learning Engineer @Wolt, and Data Scientist @Brevo

Track Host

Hien Luu

Sr. Engineering Manager @Zoox & Author of MLOps with Ray, Speaker and Conference Committee Chair

Hien Luu is a Sr. Engineering Manager at Zoox, leading the Machine Learning Platform team. He is particularly passionate about building scalable AI/ML infrastructure to power real-world applications. He is the author of MLOps with Ray and the Beginning Apache Spark 3 book. He has given presentations at various conferences such as MLOps World, QCon (SF,NY, London), GHC 2022, Data+AI Summit, XAI 21 Summit, YOW Data!, appy()

Read more
Find Hien Luu at: